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Efficient m—step Generalization of
Iterative Methods'
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Abstract In order to use parallel computers in specific applications, algorithms need to be developed and

mapped onto parallel comrputer architectures.

Main memory access for shared memory system or global

communication in message passing system deteriorate the computation speed. In this paper, it is found that
the m-step generalization of the block Lanczos method enhances parallel properties by forming m
simultaneous search direction vector blocks. QR factorization, which lowers the speed on parallel computers,
is not necessary in the mrstep block Lanczos method. The mr-step method has the minimized
synchronization points, which resulted in the minimized global communications and main memory access

compared to the standard methods.
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1. Introduction

Memory contention on shared memory
machines constitutes a severe bottleneck for
achieving their maximum performances [1].
The same 1s true for communication costs on a
It would be

desirable to have methods for specific problems,

message passing system [2].

which have low communication costs compared
to the computation costs. This is interpreted as
a small number of main memory access for the
shared memory systems and a small number of
global communications for the message passing
systems. It also reduces the need for frequent
synchronizations of the Linear
algorithms,
efficiently on parallel computers, have also been
studied [3,4,5].

Many important scientific and engineering

Processors.

algebra which are implemented

problems require the computation of a small
number of eigenvalues of symmetric large
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sparse matrices. One of the commonly used
algorithm for solving a multiple eigenvalue
problem is the block Lanczos algorithm. QR
factorization process in the block Lanczos
method is bottleneck when this method is
implemented on parallel computers because QR
factorization requires

process many

synchronization points [6,7]. In this paper we
introduce the m-step block Lanczos method that
need no @R factorization process. In the
m-step method, m consecutive steps of the
standard method are performed simultaneously.
This means, for example, that the inner
products needed during m steps of the standard
method can be performed simultaneously.

The outline of this paper is as follows. The
next section discusses the m-step power
method

iterative methods.

and gives some idea for m-step
The third section discusses
the standard block Lanczos algorithm and the
Also the
third section describes the way how to derive

the parallel algorithm for the block Lanczos

steps of QR factorization process.
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algorithm. The comparison of computational
work and the analysis of communication time
are discussed in the fourth section.

2. The m-step power method

The power method is a classical method to
find a dominant eigenvalue of a large sparse
matrix A on Krylov subspace. The power
method produces a sequence of vectors and
approximation of eigenvalue A as follows:

Algorithm 2.1 The power method

Choose ¢, with |lgyll = 1

Fori=1, 2.
L. z; = Agq;_,
2. compute ( z;, 2,)
3 aq; = z/llz)l,
4 A, = (g, Ag)
5 If llg; — g,_,lI<e then stop
EndFor
There is nothing special about doing a

Z2-norm normalization of vectors, ie. g, is
Z-norm normalized vector of Ag;_,.

In the m-step power method, step 1 of
algorithm 2.1 is performed m times and then

vectors {Ag;_, A%, \,...,A"q;_,} are
obtained. After m times execution of step 1, the
vector  A"g;_, is normalized and the

approximation of eigenvalue is computed. The
m-step power method is as follows:

Algorithm 2.2 The m-step power method

Choose g, with [l goll #= 0
For k=1, 2, ..
1. compute
AQoy, A0 yh.., A%y,

~

—_ m o
2, = A7,

2. compute ( Z,, Z,)

3 q = zZ/ zll,

4 X, = (@, AG)

5 If 193, — 7,_/i<e then stop
EndFor

One iteration of the m-step power method
corresponds to m iterations of standard power

method. This means that the vector g, the
approximation of eigenvalue X ,n algorithm 2.2
correspond to  the  vector Qpems  the
approximation of eigenvalue A,,, in algorithm
2.1. In the m-step power method 2(m-1) inner
decreased
compared to the corresponding m iteration of

products for one iteration are
standard method and m matrix vector products
can be performed simultaneously.

When the matrix A is symmetric, the Lanczos
method is much faster than the power method
for finding a dominant eigenvalue [89,10]. In
the next section we introduce m-step block
Lanczos method. The derivation and properties
of this method are different from m-step power
method except using advanced m vectors from
Krylov subspace.

3. The m-step iterative method
3.1. The Block Lanczos method

The block Lanczos algorithm for computing

multiple eigenvalues of symmetric

is based on the

extreme
matrices block Lanczos
recursion for the block tridiagonalization of a
real symmetric matrix. The block Lanczos is

as follows:

Algorithm 3.1 The block Lanczos algorithm
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X, € IR™ given, with X{X, = I,

Ml = X{AXl
For j = 1 until Convergence Do
C, = AX; = X; M; — X, \B], (X,Bf = 0)

X;1B; = C; (QR factorization process)
Mjy = X;0AX;4,
EndFor

At the beginning of the j-th pass through the
loop we have

A[Xl,..., Xj]:[Xl,...,Xj]Tj+C/[O,...,
M, B]
B, M,
where T, = .

of the block tridiagonal
matrix 7; are called Rits values of large sparse

The eigenvalues

matrix A. For many matrices and for relatively
several of the
of A, that is
algebraically-largest or algebraically—smallest of
the eigenvalues of A, are well approximated by
eigenvalues of the corresponding matrices 7.

multiple
several of the

small j extreme

eigenvalues

The steps to implement the algorithm 3.1 on
parallel computer is as follows:

Select €1 of size nxp where p is at least as
large as the number of eigenvalues desired and
the columns of @ are orthonormal.

For j = 1 until Convergence Do

1. compute AQ;

2. compute (AQ;, @)

3. M; = (AQ,, Q) : p x p matrix

4 D;=AQ;— QM;— Qj—1R;‘T—1(Q0RoT: 0)

5. Apply a modified Gram-Schmidt orthogonalization

to the columns of [ (that is, @+l = D QR
factorization)

0, I]

EndFor

Next,
eigenvalues of T}

compute the p algebraically-largest
The Ritz vector Q; v (=2)

obtained from an eigenvector y of a given T

is an approximation to a corresponding eigenvector
of A.

The above block Lanczos procedure with no
re-orthogonalization  has  minimal  storage
requirements and can therefore be used on very
large matrix A, if only approximations to
eigenvalues are required. However, the inner
products cannot be performed simultaneously
because of steps 2, 5 and inner products require
global communication among all processors on

message passing systems. These force several

accesses of vectors &, D; AQ; per one
iteration of above procedure. For shared
memory systems, main memory accessing may

So in the section 3.3, the m-step block
method is proposed to perform all inner
products needed for m

be slow.
Lanczos
iterations of above
procedure.

3.2. Parallel modified Gram-Schmidt method

The modified Gram Schmidt orthogonalization
in step 5 makes many synchronization points.
The following modified Gram Schmidt algorithm
set @

QR factorization

computes orthonormal vector for

De IR"™. That is D =

where R is the upper triangular matrix [10]:
Algorithm 3.2 Modified Gram-Schmidt Algorithm

Forj=1top

n 5 1/2
[ [l;dz‘j]

Fori=1ton
Gy = dy/Tyi
EndFor
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For [ =j+l to p

2 1/2
Yi = {;qijdil]

Fori=1ton

gi = dit — qTit

EndFor
EndFor
EndFor

The steps to implement efficiently the algorithm
3.2 on parallel computer is as follows:

Forj=1top

1. Compute (d;, d))

2. 1j = (dj, &)

3. g = di/ry

4. Forl=j+1top
Compute (qj, di
EndFor

5 For !l =j+1 to p
51 i = (g, d)"*
0.2 q = di — qiry

12
)

EndFor
EndFor
In the above procedure p(p+1)/2 inner

products should be separately repeated Zp-I
times and so communication time rate is high
In the next
section we introduce m-step block Lanczos

for this QR factorization process.

method which has much less synchronization
points and need no @K factorization process.

3.3. m-step block Lanczos method

One way that can lead to build a new parallel
block Lanczos algorithm is to perform m steps
of the standard algorithm simultaneously in
parallel using a set of mxp linearly independent

vectors. In this case, the set of mxp linearly

independent vectors V, is spanned by

[Vi,AVL, ..., A"V, VielR ™7,

Remark 1
If 7, and 7, are orthogonal for i # j,
Vk - [T/I,‘Vz,...,z]

into QxRi, where @, = [Q,, @, ...

R, = diag [R, R, ..., R,).

can be decomposed

s Qk] and

Remark 2

If 7; is a symmetric trndiagonal matrix
generated by the standard block Lanczos
algorithm and T, = Ry'T;R, where j = mwk,
T, becomes a non-symmetric matrix similar to

T; as follows:
G, E,
F\ G, Ey

Ek—l
Fpor Gy

where G, = [Gl,...,G), GiIR™? and
E;, = [E},...,E"], EicIR™"

k, and j = 1,
shaped matrix of which the block in the upper
right corner is a triangular matrix with zero

for i = 1, ..,

.., m Here F; is a specially

elements otherwise.  This  upper trangular
matrix arises from the @R factorization of Vi,
together with  orthonormal
following is an example of F; for p = 3, and m

:2:

vectors. The

OO ODOD
je R en e N e e R w ]
OO D
OO OO *
OO O O * ¥
OO O X ¥ ¥

Since T, is similar to 7} with J=k*m, they
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have the same eigenvalues. Note that V! is

not orthogonal, but it does not induce any
problem in constructing the algorithm.  The

reason is that, as given in Remark 1, V, and

=

are orthogonal for |

vV, = [V, VA .,V

= j and
1s a set of linearly

independent
[V, AV,

vectors that span

LAV VieR ™). Based on

the above analysis, a new parallel block Lanczos
algorithm can be constructed as follows:

Algorithm 3.3
algorithm

The m-step block Lanczos

V, =0, V, = [Vi, AV}, A%V}, ... A" V1]

For k = 1 until Convergence Do

Select Gk , Fx1 so that V, is orthogonal
to T/k_l.
This gives

Vier = AVY — T/k—lEZl—l - 7kG;en
Select C’, such that

LAY

V,_, is orthogonal

to [VLAV,. which gives

.V-;?'f'l = Aj_1V£€+l - 7kcjk for .] = 27 eny

m.
EndFor
We will present the reduction matnx

generated by m-step block Lanczos method for
the special case of m = 2 and p = 2

% %
* *
kX%

*

—_ ] % % % *

— O | *® % % %

* ¥ ¥ | ¥ ¥ ¥
* ¥ ¥ * | O * ¥ % %
* ¥ ¥ ¥ | o ® ¥ ¥ *
¥ ¥ ¥ ¥ | ¥ ¥ % ¥

Next, we demonstrate how to determine the
parameters Gk, Ei-1, Gk in the above process:

Scalar @ V,”AV,= V, V,G,
T/k—lTA T/kz T/k—lT/k—lEk—l
Scalar 22 0= V, A"V V] V,C,

The inner products ( V,, V), ( V,, AV,),
(Vi , AV, ( VA7V can be
reduced to (VE, VD), (VLAVY,..(VELA™VY)  in

a similar way to the s—-step Lanczos method[7].
We now formulate the m-step block Lanczos
algorithm.

Select V;

For k = 1 until Convergence Do

1. Compute AVL, A*V:, ..., A"V

2. Compute ZpZm inner products
3. Compute Scalars

C,_,forj=2 .,m

E,_,, Gyfori=1,., m
4. Compute

Vi = AT, — VG
(with Vy = 0, C) =0)
5. Compute AV}
6. Compute

Viy = AVy — V,\Ep, — V,Gr
(with Ef = 0 )

EndFor

In the above algorithm all the inner products
are performed at once in the step 2
Matrix—vector operations are performed in the
step 1 and 5, and the other steps are for vector

update operation.

4. Analysis of m-step iterative method
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During the procedure of the standard block
Section 3.1,
Pp(p+1)/2 inner products should be separately

Lanczos algorithm in  the

repeated at Zp times. Thus on message
passing system, lots of times are needed for
global communication, which in turn reduces the
efficiency of the parallel system.

However, the new  parallel algorithm
mtroduced in Section 3.3 can perform all the
needed inner products at

iterations of the corresponding standard method,

once during m

the time necessary for inner products is reduced
by a factor of 1/(2pm)compared to the standard
method.
memory latency time for the shared memory

The main cause for the increased

system 1s too many synchronizing point. In a
new parallel algorithm 3.3 such a bottleneck
phenomena can be reduced. Table 1 shows the
number of vector operations and the data
communications during a single iteration of the
algorithm
iterations of the corresponding standard method.

m-step block Lanczos and m

<Table 1> Comparison of the numbers of the
vector operations and the data

communications for block Lanczos

method
standard m-step
algorithm algorithm
inner product [p* + pp+1)/2lm| 20°m
vector update (2p+1)pm pmim+1)
matrix-vector m (m+1)
multiplication p P
Gl
obal .. 2pm 1
communication
Local communication m 2

As shown in Table 1, the communication cost
can be greatly decreased by introducing more
effective algorithm in parallel process.

60
—O—5-step
—=—standard
a 40} 4
3
O
5}
3}
Q.
“ o201 ]
0 ! ! i

16 32 64
Processor Number

<Fig. 1> Perfomance of the standard and the
m-step block Lanczos algorithm in
Cray T3E.

Fig. 1 shows the efficiency of the 5-step
block Lanczos algorithm implemented on MP
parallel computer Cray T3E. All the inner
products needed for m iterations of the standard
method are performed at the same time in the
that only one global
required and the

communication cost i1s decreased on a message

m-step method, so
communication 1s

passing system like Cray T3E. But the m-step
block Lanczos method needs p(m+1) times of
matrix-vector operations compared to pm times
in the standard methods. But in the case of
vector updates, the number is slightly smaller in
the m-step method. The m-step algorithm is
also effective in the matrix-vector operations
since the communication time between the
of Cray T3E can be

reduced. While the efficiency of parallelism

adjacent processors

increases with increasing m and p, but a loss
of accuracy for eigenvalues has been observed
for large m > 5.

5. Conclusions

Parallel processing systems equipped with

from a few to many thousand processors are
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now being used in many areas. As the number
of the processors involved in the parallel system
is increased, the relative importance of the
communication cost grows. In this paper, we
proposed new m-step iterative method suitable
to reduce the communication cost.
block Lanczos algorithm utilizes a reduced

matrix similar to that in the standard block

The m-step

Lanczos method with the same eigenvalues, but
m-step method is more effective in the parallel
system because a large amount of the inner
products can be done at once. This process can
reduce the data communication time in a
message passing system. The m-step method
also help to reduce the memory latency time in
shared memory systems by reducing the
synchronization point showing a better data
locality. The new m-~step method has the better
performance compared to the standard method

in MP parallel computer Cray T3E.
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