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Server Selection Schemes Considering Node Status For a Fault-Tolerant
Streaming Service on a Peer-to-Peer Network

Hyunjoo Kim*, Sooyong Kang**, and Heon Y. Yeom*

Abstract: Peer-to-Peer (P2P) networks are attracting considerable research interest because of their
scalability and high performance relative to cost. One of the important services on a P2P network is the
streaming service. However, because each node in the P2P network is autonomous, it is difficult to
provide a stable streaming service on the network. Therefore, for a stable streaming service on the P2P
network, a fault-tolerant scheme must be provided. In this paper, we propose two new node selection
schemes, Playback Node First (PNF) and Playback Node First with Prefetching (PNF-P) that can be
used for a service migration-based fault-tolerant streaming service. The proposed schemes exploit the
fact that the failure probability of a node currently being served is lower than that of a node not being
served. Simulation results show that the proposed schemes outperform traditional node selection

schemes.
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1. Introduction

As the demand for streaming service on the Internet is
increasing and the quantity of streaming contents is
growing rapidly, it has become difficult to provide a stable
streaming service using traditional -client/server-based
architecture. The new network service model, Peer-to-Peer
(P2P) service, addresses this problem. The P2P service is a
form of reciprocal network service where each node in the
P2P network acts as both a client and a server.

However, while the P2P service can address the problem
of client/server service architecture, i.e., load concentration
on the server, it is difficult to provide guaranteed quality of
service (QoS) because each node in a P2P network is
autonomous. In particular, because the streaming service
has real-time characteristics, QoS degradation due to node
failures is critical. Therefore, for streaming service on a
P2P network, a fault-tolerant scheme that can cope with
node/link failures must be developed. Previous works on
fault tolerance for streaming service in P2P networks can
be classified into: 1) data recovery using redundant data, 2)
reallocation of the data sending rate from server nodes, 3)
special encoding for graceful quality degradation, and 4)
service migration.

Before a client node sends a service request to other
nodes, it is necessary to select server nodes from many
candidate nodes that have the desired object stored, and
because the number of nodes participating in a P2P
network is large and each node is not only autonomous but
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all may have different outbound bandwidths, the QoS
depends mainly on the node selection scheme. Therefore, it
is necessary to devise a good node selection scheme for a
streaming service on a P2P network.

In this paper, we propose two new node selection
schemes, Playback Node First (PNF) and Playback Node
First with Prefetching (PNF-P) that decrease the
probability of node failure, and therefore, increase the
probability of providing a stable streaming service. The
proposed schemes exploit the fact that the failure
probability of a node currently being served is lower than
that of a node not being served. We evaluated the
performance of the proposed schemes when used in a
service migration-based fault-tolerant streaming service
model.

The organization of this paper is as follows. In Section 2,
related works are described, and in Section 3, the models
for P2P streaming service are presented. In Section 4, we
describe the traditional and proposed server selection
schemes. We will show various simulation results that
reveal the performance of the proposed framework in
Section 5, and present our conclusions in Section 6.

2. Related Work

In previous works, there are two kinds of P2P networks.
The first establishes logical relations between nodes to provide
service and manage the network. It mainly focuses on the
contents distribution from origin node to all the participating
nodes. vTrails[8], Allcast[9], Spreadlt[10], CoopNet[11],
Narada[12], Nice[13], Zigzag[14] are examples. Narada[12] is
for multi-sender multi-receiver streaming applications. It
maintains a mesh among peers and establishes a tree when
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a sender transmits data to receivers. However, Narada is
appropriate for a small P2P network. To extend it to a large
P2P network, Nice[13] uses the multi-layer hierarchical
clusters. Nice uses the head to forward content to its
subordinates, thus incurring a high bottleneck. To address
this problem, Zigzag[14] maintains the administrative
organization representing the logical relationship and the
multicast tree representing the physical relationship among
peers. The head in Zigzag forwards content to foreign
members rather than own members. The second does not
establish logical relations between the nodes. It mainly
focuses on file sharing. Napster and Gnutella are examples.

Leung|1,2,3] used Reed-Solomon Erasure (RSE) correcting
code for data recovery. Although such schemes can cope
with a predefined number of node failures, they require
additional network bandwidth for redundant data. Thinh[4]
proposed a dynamic transmission rate adaptation scheme
where multiple server nodes change data transmission rates
to the client node in order to minimize packet loss. This
scheme distributes the transmission rate of a failed node
among the active server nodes, and because it assumes that
the sum of the bandwidths of each node is larger than the
necessary bandwidth for a normal playback rate, it is
impossible to continue service when the aggregated
bandwidth becomes smalier than the playback rate because
of the multiple node failures. Coopnet[11] proposed
Muitiple Description Coding (MDC), which enables
graceful QoS degradation when packet loss occurs because
of node/link failure or link state change. This scheme encodes
a continuous media object into multiple independently
decodable substreams so that the client node can continue
playback despite node/link failures with degraded quality
using only the substreams received. Spreadit[10] used a
service migration scheme that finds a new server node to
replace the failed node. However, because this scheme
finds a new server node in the application level multicast
tree from the root node, a considerable amount of time is
required to find the new server node. Zigzag[14] can
recover node failures gracefully and quickly by separating
foreign head for forwarding content and own head for
organizing clusters. However, Zigzag focuses on live
media streaming that has one source peer, and thus, on-
demand streaming using multi-sender requires another
solution for node failures.

Authors considered video-on-demand streaming and live
streaming differently in most previous works because the
two types of streaming have fundamental differences. End-
to-end delay is more important to live streaming than VoD
streaming because the shorter end-to-end delay makes the
stream more live. On the contrary, in VoD streaming, it is
more important to deliver the whole video to the new
joining user. [6,7,10,12,13,14,15,16] are approaches for
live streaming in P2P and [1,2,3,5,17,18] are for VoD
streaming in P2P. Most approaches for live streaming use
application multicast trees which are focused on reducing
end-to-end delay and being constructed efficiently whenever a
client joins or leaves. When application multicast trees are
used for VoD streaming, other additional streams are

needed at the beginning to deliver the video to a late client.
For example, a patching stream for the beginning part and
a base stream for the current part like in P2Cast[18]. A
server or another early client can deliver the beginning part
to a late client. P2VoD[17] is the similar work to P2Cast,
however, it eliminates the use of a patching stream by
introducing the concept of generation and a caching
scheme. The caching scheme allows a group of clients,
arriving to the system at different times, to store the same
video content in the prefix of their buffers. Such a group
forms a generation. When a late client comes in, it is
served by only one stream from an early client. If the early
client which serves to the late client leaves during the
service, one of the group members replaces it and resumes
the service.

In this paper, a client finds candidate server nodes which
have(stored) the requested video object and selects a few
server nodes from among them. Hence, we focus on VoD
streaming service.

3. Peer-to-Peer Service Model

In a P2P network each node acts as both a client and a
server node. A client node receives data for playback from
one or more server nodes. A server node can provide
services to multiple client nodes within the predefined
outbound bandwidth. Therefore, a node can receive
services from multiple server nodes and can provide
services to multiple client nodes, simultaneously. Assuming
no node/link failures, the service-requesting node should 1)
search: find nodes that have the required object, 2) node
select: receive available outbound bandwidth information
from those nodes and select a suitable number of server
nodes that will actually provide the service, and 3)
schedule: assign data segments for transmission to the
selected nodes. Because the search is beyond the scope of
this paper, we assume that the client node already knows
all the nodes that have the required object. We also assume
that media objects are encoded into constant bit rate data
and are sequences of data segments of equal size.

Every node can act as both a client and a server for a
P2P streaming service. When a service request arrives from
a client node, the server node first advises the client node
of the available outbound bandwidth. Upon receiving the
bandwidth information, the client node informs the server
node whether it is selected as a server node. If selected, the
server node provides the service to the client, and if not, it
sends state update information whenever the available
outbound bandwidth changes to the client.

After selecting the initial server nodes, the client node
requests data transmission and assigns segments to each
selected server node, selects a new server node when a
fault signal arrives from the buffer monitor, and sends a
request for data transmission to the selected new server
node. Therefore, the server node should have: 1) a node
selector that chooses server nodes from the many nodes
that have the demanded object; 2) a segment handler that
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assigns data segments to each server node for transmission;
3) a service manager that requests data transmission from
the server nodes and sends a service finish request to the
node that should cease data transmission because of
node/link failure or link state change; and 4) a state
manager that receives state update information from nodes
that are not currently selected as a server node but can be
selected later if a server node fails, and transfers that
information to the node selector.

There are two types of fault - failure and state change.
Failure means that there can be no more service between
server node and client node because of server node
shutdown or intermediate link failure. State change means
that the actual data transmission rate from the server node
to the client node becomes lower than the expected rate
because of server overload or network congestion. In this
paper, we cope with these in a unified manner.

Before starting playback, the client node prefetches data
segments in buffers, with each buffer dedicated to a
specific server node. The user can determine the
prefetching quantities by configuring the buffering time (z,)
in the player. The quantity of data prefetched in a buffer is
determined as ¢, - r;, where r; is the transmission rate of
server i. Therefore, different prefetching quantities for each
buffer can be defined to match the transmission rate of
each server node, and because at least one segment should
be transmitted to each buffer before playback starts, the
transmission rate of each server node should be no smaller
than s; / £,, where s, is the segment size. Therefore, the
client node has to exclude those nodes that have smaller
available outbound bandwidth than s,/ ¢, from the possible
server nodes.

After prefetching data, during the buffering time, the
client node starts playback. The volume of data in a buffer
does not change significantly unless a fault occurs.
However, if a fault occurs, either no more data arrives at
the corresponding buffer (failure) or the rate of arrival
decreases (state change) while the consumption rate does
not change. Therefore, the amount of data in the buffer
decreases as time passes. Thus, we can determine the
occurrence of a fault by monitoring the volume of data in a
buffer.

The client node starts to monitor each buffer when the
playback begins. Let o be the predicted time length from a
fault occurrence to when a newly chosen server node starts
service. There should be sufficient data for playback
during ¢ in each buffer. Therefore, we can determine the
fault detection threshold (&) for buffer(i) from the
following equation:

v
6= —— x§
Sd

When a fault is detected, the node selector chooses one
or more replacement server nodes (R-servers) that will
replace the failed node. To prevent the necessity of
segment reassignment to all servers, the aggregated service

rate of R-servers is the same as that of a failed node. The
segments previously assigned to the failed node will be
reassigned to the R-servers.

4. Server Selection Schemes

After searching candidate nodes that have the demanded
object, the client node should select server nodes that will
collectively provide the service. We considered two
previous schemes, Larger available outbound Bandwidth
First(LBF) and Smaller available outbound Bandwidth
First (SBF), and propose new server selection schemes,
PNF and PNF-P.

4.1 Larger available outbound Bandwidth First
(LBF)

In the LBF scheme, a node that can provide larger
available outbound bandwidth is selected first. Therefore,
the number of server nodes can be minimized and we can
predict that the probability of a node/link failure will be
small. However, the probability that a server node will fail,
when using the LBF scheme, is the same as that when the
server nodes are randomly selected. This means that the
LBF scheme does not decrease the node failure probability.
In addition, when a node failure occurs, the overhead to
cope with the fault is large because the failed node (which
has large available outbound bandwidth) must be replaced
by multiple nodes (which may have smaller available
outbound bandwidth). Therefore, the recovery time can be
large.

4.2 Smaller available outbound Bandwidth First
(SBF)

Using the SBF scheme, a node that can provide smaller
available outbound bandwidth is selected first. Therefore,
the number of total server nodes is maximized and this also
maximizes the probability of a node/link failure. In
addition, the SBF scheme cannot decrease the node failure
probability itself. Therefore, the overall failure probability
of SBF is larger than that of LBF. However, the overhead
to recover from a failure is smaller than that of LBF
because the outbound bandwidth of the failed node is
generally smaller than that of other candidate nodes, which
means that only one candidate node is sufficient to replace
the failed node.

4.3 Playback Node First (PNF)

If we know whether a node is currently being served or
not, and when a node is currently being served how much
time is left before the service will be completed, then we
can decrease the failure probability of a server node.
Because the probability that a node currently being served
will fail in the course of service is relatively small, it will
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Fig. 1. Playback Node First (PNF) scheme

decrease the overall node failure probability when we
select the node that is currently being served first. The
Playback Node First (PNF) scheme originated from this
idea.

The PNF scheme is based on the LBF scheme. However,
when there are nodes that are currently being served, they
are selected first. Nodes that have recently started playback
are more likely to be selected, which means that any node

that has the longer remaining playback time is selected first.

If there are nodes that have the demanded object and are
playing another object or that do not have the demanded
object but are playing it, then the nodes can provide service
of the object, and therefore, they can be server nodes. If
there are no nodes that satisfy these conditions, server
nodes are selected by the LBF scheme. Therefore, the
server nodes that are selected by the PNF scheme have a
lower probability of failure than those selected by the LBF
or SBF schemes.

Fig. 1 shows an example of the PNF scheme. N, N;, and
N, represent candidate nodes that are currently being

served, and N, is a candidate node that is not under service..

Assume that a new client node requests service at time t,
and the bit rate of the requested object is 300 Kbps. Then,
No, Ny, and N, will be selected as server nodes for the new
client. Subsequently, it is likely that the new service will be
stable until time t; when the service for N, finishes. From
that time, the probability of node failure increases.
However, it is still smaller than that of the LBF or SBF
scheme because N and Ny are still currently being served.
When the playback time reaches t;, the failure probability
of each node becomes the same as that for LBF or SBF.
However, although N, fails after t; because the PNF
scheme selects a new server node for replacement using the
playback node first rule, the newly selected node can also
be predicted to be stable during its service time.

4.4 Playback Node First with Prefetching (PNF-P)

The PNF scheme can decrease overall node failure
probability by decreasing the failure probability of each
node. However, because the node failure probability
increases after the service of the server node finishes, we
propose an enhanced scheme, Playback Node First with
Prefetching (PNF-P), which prefetches future data in
advance into the storage of the client node. Using the PNF-

P scheme, a client node receives the future data from one
or more server nodes selected for prefetching. The server
nodes for prefetching transmit data in the reverse direction,
from the end of the object, and when the playback reaches
the point where the remaining data are already prefetched
to the local storage, the client node sends a service finish
message to all server nodes and uses local data. The server
nodes for prefetching are also selected using the PNF
scheme.

Table 1. Simulation parameters

Parameter | Value
number of nodes | 1500
number of initial servers | 20
outbound bandwidth | 30
number of objects | 20
object playback rate | 300 ~ 100 Kbps
segment size | 10 Kbits
object size | 3600 seconds.
buffering time | 5 seconds
predicted migration time | 2 seconds
request arrival rate | exponential distr. with mean of 0.012
network congestion interval | 10000 seconds
network congestion duration | 50 seconds
normal state migration time | exponential distr. with mean of 0.1 sec.
congestion state migration | exponential distr. with mean of 1 sec.
time | 6250 ~ 20000 seconds
Mean Time Between Failures
(node/link) | 86400 seconds (24 hours)
simulation time

5. Simulation

In this section, we present and discuss various simula-
tion results. The parameters used for the simulation are
shown in Table 1.

The initial servers for a client are those nodes that have
the demanded object. We fixed the number of initial server
nodes at 20. Therefore, initially, the client should select
server nodes from those 20 nodes and the remaining nodes
become candidate nodes. The predefined outbound
bandwidth to provide services to other nodes varies from
30 Kbps to 100 Kbps with 10 Kbps increments and they
are uniformly assigned to all nodes in the P2P network.
The predicted migration time is the predicted time from a
fault occurrence to when a newly selected server node
starts service. The value is used to detect node failure or
link state change. The initial buffering time is five seconds,
but this does not affect the performance of the system,
provided that it is larger than the predicted migration time,
which was set as two seconds. We assumed that each node
requests an average of one streaming service per day.
Therefore, the average request arrival rate is (1/86400)x
1000~0.012. When we considered the link state change we
assumed that each path from a server node to the client
node is congested following an exponential distribution
with mean interval 10,000 seconds and the congested state
lasts for 50 seconds. For normal state networks, the actual
migration time follows an exponential distribution with a
mean of 0.1 seconds, and for a congested network it
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Fig. 2. Simulation results

follows an exponential distribution with a mean of one
second. We limited the number of clients that are served
concurrently in the P2P network to 50.

Fig. 2 shows the simulation results. As the Mean Time
Between Failures (MTBF) becomes larger, less failures
occur. Fig. 2-(a) shows the average number of server nodes
for each service. As can be seen from the figure, SBF uses
more server nodes than LBF because the SBF selects nodes
that have the smallest available bandwidth first, whereas
the LBF selects nodes with the largest available bandwidth
first. In the case of SBF, as the MTBF value becomes
smaller, more failures occur, and the average number of
server nodes is increased because there can be a server that
does not use the whole available bandwidth and has
bandwidth left over. For example, consider a failed server
with a transmission rate of 70 Kbps and two server nodes,
Nj and N,, which have data rates of 40 Kbps and 50 Kbps,
respectively. Then, N serves with the 40 Kbps data rate
and N, is sufficient to serve with 30 Kbps data rate.
Therefore, as the MTBF value decreases, the number of
server nodes increases. However, when the MTBF value is
too small, the number of available nodes becomes too
small, which means that there are a small number of nodes
with small available outbound bandwidth. Therefore, two
or more server nodes with small transmission rate can be
replaced with one node with large available outbound
bandwidth when they fail, which decreases the average

number of servers. On the contrary, because the number of
nodes with large available bandwidth also decreases as the
MTBEF value decreases, the average available bandwidth of
server nodes selected by LBF decreases, which increases
the number of server nodes for a client using LBF, and
because the PNF scheme is based on the LBF scheme, the
number of server nodes is similar to that of the LBF
scheme. However, because the PNF scheme disobeys the
LBF rule when there are nodes currently being served, it
uses slightly more server nodes than LBF.

Fig. 2-(b) shows the average number of service
migrations caused by a node failure or network congestion.
When a server node fails, the service from the failed node
should migrate to another server node selected for
replacement. From the figure, the number of migrations
increases as the MTBF decreases, and because the PNF
scheme guarantees almost no failures during the playback
time of the server nodes, the number of migrations is
smaller than for the LBF and SBF schemes. For the PNF-P
scheme, additional server nodes are used for prefetching.
However, because a client can prefetch part of the
demanded object in advance and use local data instead of
receiving data from server nodes when the playback
reaches the time when the remaining data are already
stored in the local storage, the actual service time decreases.
Therefore, the average number of node failures also
decreases. In the figure, PNF-P1, PNF-P2, and PNF-P3 use
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one, two, and three server nodes for prefetching,
respectively. As the number of server nodes for prefetching
increases, the actual service time decreases, and therefore,
the average number of node failures also decreases.

In Fig. 2-(c) and (d) are the number of abnormal service
terminations and the number of normally finished services,
respectively. When a server node fails and there are
insufficient candidate nodes to replace the failed node, the
service cannot continue and playback is terminated. This is
called an abnormal service termination. As more failures
occur, the number of candidate nodes decreases and the
probability of abnormal service termination increases
because of the lack of suitable candidate nodes. Since the
PNF scheme has a smaller number of node failures, as
shown in Fig. 2-(b), the number of abnormal service
terminations is smaller than that for LBF or SBF.
Correspondingly, the number of normally finished services
is larger than that for LBF or SBF, and because the PNF-P
scheme uses more server nodes than the original PNF
scheme, the number of abnormal service terminations for
PNF-P is slightly larger than that of the original PNF
scheme, and, correspondingly, the number of normally
finished services for PNF-P is slightly smaller than that of
the original PNF scheme.

6. Conclusion

To provide a stable streaming service on a Peer-to-Peer
network, a fault tolerance scheme must be devised to deal
with node failures. One of the traditional fault tolerance
schemes is a service migration from the failed node to a
new node. When using a service migration-based fault-
tolerant scheme, it is important to select relatively stable
nodes as server nodes. In this paper, we proposed new
node selection schemes for a service migration-based fault-
tolerant streaming service on Peer-to-Peer networks. The
proposed schemes, Playback Node First (PNF) and
Playback Node First with Prefetching (PNF-P), are based
on the fact that the failure probability of a node currently
being served is lower than that of a node not being served.
The proposed schemes decrease the average number of
node failures, and therefore, increase the probability of
providing stable streaming service. From the simulation
results, we found that the proposed schemes decrease the
number of node failures, and therefore, provide a more
stable streaming service on Peer-to-Peer networks.
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