DOI QR코드

DOI QR Code

Metamorphosis Hierarchical Motion Vector Estimation Algorithm for Multidimensional Image System

다차원 영상 시스템을 위한 변형계층 모션벡터 추정알고리즘

  • 김정웅 (서울벤처정보대학원대학교) ;
  • 양해술 (호서대학교 벤처전문대학원)
  • Published : 2006.04.01

Abstract

In ubiquitous environment where various kinds of computers are embedded in persons, objects and environment and they are interconnected and can be used in my place as necessary, different types of data need to be exchanged between heterogeneous machines through home network. In the environment, the efficient processing, transmission and monitoring of image data are essential technologies. We need to make research not only on traditional image processing such as spatial and visual resolution, color expression and methods of measuring image quality but also on transmission rate on home network that has a limited bandwidth. The present study proposes a new motion vector estimation algorithm for transmitting, processing and controlling image data, which is the core part of contents in home network situation and, using algorithm, implements a real time monitoring system of multi dimensional images transmitted from multiple cameras. Image data of stereo cameras to be transmitted in different environment in angle, distance, etc. are preprocessed through reduction, magnification, shift or correction, and compressed and sent using the proposed metamorphosis hierarchical motion vector estimation algorithm for the correction of motion. The proposed algorithm adopts advantages and complements disadvantages of existing motion vector estimation algorithms such as whole range search, three stage search and hierarchical search, and estimates efficiently the motion of images with high variation of brightness using an atypical small size macro block. The proposed metamorphosis hierarchical motion vector estimation algorithm and implemented image systems can be utilized in various ways in ubiquitous environment.

다양한 종류의 컴퓨터가 사람, 사물, 환경 속에 내재되어 있고, 이들이 서로 연결되어, 필요한 곳에서 활용할 수 있는 유비쿼터스 환경에서는 홈 네트워크를 통해 이 기종 기기간 다양한 데이터 교환을 요구한다. 더욱이 원활한 영상 데이터의 처리, 전송, 모니터링 기술은 핵심적 요소가 아닐 수 없다. 공간 및 시간적인 해상도, 컬러의 표현 그리고 화질의 측정방법 등 고전적 영상 처리 연구 분야뿐만 아니라 국한된 대역폭을 갖는 홈 네트워크의 전송 체계에서 전송률 문제에 대한 심도 있는 연구가 필요하다. 본 논문에서는 홈 네트워크 상황에서 콘텐츠의 중심이 되는 영상 데이터의 전송과 처리 그리고 제어를 위하여 새로운 움직임 추정 알고리즘을 제안하고 이를 이용하여 다중카메라에서 전송된 다차원 영상의 실시간 모니터링 시스템을 구현한다. 각도, 거리등 다양한 환경에서 전송되어지는 스테레오 카메라의 영상 데이터들은 축소, 확대, 이동, 보정 등 전처리 후 제안된 움직임 보상을 위한 변형계층 모션벡터 추정 알고리즘을 이용하여 압축 처리, 전송 된다. 기존 모션벡터 추정 알고리즘인 전역 탐색, 3단계 탐색, 계층적 탐색이 갖는 장점을 계승하고 단점을 보완한 변형계층 알고리즘은 비정형, 소형 매크로 블록을 이용하여 휘도의 편차가 큰 영상의 효율적 움직임 추정에 이용된다. 본 논문에서 제안한 변형계층 움직임 추정 알고리즘과 이를 이용해 구현된 영상 시스템은 유비궈터스 환경에서 다양하게 활용될 수 있다.

Keywords

References

  1. http://www.vqeg.org/ (Video Quality Experts Group)
  2. Iain E.G. Richardson, H.264 and MPEG-4 [조중휘. 손요한, 차세대 영상압축기술(홍릉과학출판사, 2004)]
  3. D. Geiger, B. Ladendorf, and A. Yuille, 'Occlusions and binocular stereo', Intl. Journal of Computer Vision, Vol.l4, No.3, pp.2ll-226, 1995 https://doi.org/10.1007/BF01679683
  4. ISO/IEC 14496 - 10 and ITU - T Rec. H.264, Advanced Video Coding, 2003
  5. F.Pereira and T. Ebrahimi(eds), The MPEG -4 Book, IMSC Press, 2002
  6. K. T. Tan and M. Ghanbari, A multi-metric objective picture quality measurement model for MPEG video, IEEE Trans. Circuits and Systems for Video Technology, 10(7), October, 2000 https://doi.org/10.1109/76.875525
  7. ISO/IEC 14495-1:2000 information technology - lossless and near-loss compression of continuous-tone still image : Baseline, (JPEG- LS).
  8. ITU-T Recommendation, Information technology - coded representation of picture and audio information - progressive bi-level image compression, T82(JBIG)
  9. D. W. Kim, J. S. Choi and J. T. Kim, 'Adaptive motion estimation based on spatiotemporal correlation,' Signal Processing: Image Commun., Vol. l3, pp.161-170, 1998 https://doi.org/10.1016/S0923-5965(98)80013-1
  10. D.Tzovaras, N.Grammalidis and M.G.Strintzis, 'Object-Based Coding of Stereo Image Sequences using Joint 3-D Motion/Disparity Compensation,' IEEE Trans. on Video Technology, Vol.7, No.2, pp.312-328, April, 1997 https://doi.org/10.1109/76.564110
  11. MPEG-4 Industry Forum, http://www.m4if.org
  12. ITU-T Recommendation H.263, Video coding for low bit rate communication, Version2, 1998
  13. J. C. Tsai, C. H. Hseigh, S. K. Weng, and M. F. Lai, 'Block-matching motion estimation using correlation search algorithm,' Signal Processing: Image Commun., Vol. 13, pp.119-133, 1998 https://doi.org/10.1016/S0923-5965(97)00052-0
  14. L. K. Liu and E. Feig, 'A block-based gradient descent search algorithm for block motion estimation in video coding', IEEE Trans. on Circuits Syst, Video Technol., Vol.6, pp.419-422, 1996 https://doi.org/10.1109/76.510936
  15. M. Brunig, W. Niehsen, 'Fast full-search block matching,' IEEE Trans on Circuits and Systems for video Technology, Vol.11, No.2, pp.241-247, Feb., 2001 https://doi.org/10.1109/76.905989
  16. A. Ahmad, N. Khan, S. Masud, and M. A. Maud, 'Selection of variable block sizes in H.264,' IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), Vol.3, pp.173-176, May, 2004 https://doi.org/10.1109/ICASSP.2004.1326509
  17. W.Li and E. Salari, 'Successive elimination algorithm for motion estimation,' IEEE Trans. on Image Processing, Vol.4, No.1, pp.105-107, 1995 https://doi.org/10.1109/83.350809
  18. X. Q. Gao, C. J. Duanmu, and C. R. Zou, 'A multilevel successive elimination algorithm for block matching motion estimation,' IEEE Trans. on Image Processing, Vol.9, No.3, pp.501-504, 2000 https://doi.org/10.1109/83.826786
  19. J. Y. Lu, K. S. Wu and J. C. Lin, 'Fast full search in motion estimation by hierarchical use of Minkowski's inequality,' Pattern Recongnition, Vol.31 , No.7, pp.945-952, 1998 https://doi.org/10.1016/S0031-3203(97)00077-0
  20. L.M. Po and W. C. Ma, 'A novel four-step search algorithm for fast block motion estimation,' IEEE Trans. on Circuits ?Syst, Video Technol., Vol.6, pp.313-317, 1996 https://doi.org/10.1109/76.499840
  21. M. Ghanbari, The cross-search algorithm for motion estimation, IEEE Trans. Commun., 38, July, 1990 https://doi.org/10.1109/26.57512
  22. P. Kuhn, G. Diebel, S. Hermann, A. Keil, H. Mosshofer, A. Kup, R. Mayer and W.Stechele, Complexity and PSNR-Comparison of Several Fast Motion Estimation Algorithms for MPEG-4, Proc. Applications of Digital Image Processing XXI, San Diego, 21-24, July, 1998; SPIE, 3460, pp.486-499 https://doi.org/10.1117/12.323203
  23. J. N. Kim and T. S. Choi, 'A fast full-search motion- estimation algorithm using representative pixels and adaptive matching scan,' IEEE Trans. on CSVT, Vol.10, No.7, pp.1040-1048, 2000 https://doi.org/10.1109/76.875508
  24. Z, Zhou, M. T. Sun, and Y. F. Hsu, 'Fast variable block-size motion estimation algorithm based on merge and slit procedures for H.264 / MPEG-4 AVC,' International Symposium on Circuits and Systems, Vol.3, pp.725-728, May, 2004
  25. Fitzek FHP, Reisslein M, 'MPEG-4 and H.263 video traces for network performance evaluation,' IEEE Network, Vol.l5 No.6, pp.40-54, 2001 https://doi.org/10.1109/65.967596
  26. Thomas Wiegand, Gray J Sullivan, and Ajay Luthra, 'Overview of the H.264/AVC Video coding Standard,' IEEE Trans. Circuits Syst, Video Technol, July, 2003 https://doi.org/10.1109/TCSVT.2003.815165