DOI QR코드

DOI QR Code

인터넷 상점에서의 내용기반 추천을 위한 상품 및 고객의 자질 추출 성능 비교

Comparison of Product and Customer Feature Selection Methods for Content-based Recommendation in Internet Storefronts

  • 발행 : 2006.04.01

초록

인터넷 쇼핑몰에서의 상품 추천을 위해 널리 사용되는 방식 중 한 가지는 상품의 특성과 고객의 특성을 비교하여 고객에 맞는 상품을 추천하는 방식이다. 이 방식은 상품이나 고객의 특성을 표현하는 자질(Feature)의 개수가 많을수록 그 중에 어떤 자질을 선택해야 더 좋은 추천 성과를 가져올 수 있는지 파악해 내는 것이 추천의 효과 및 효율성 측면에서 중요하지만 아직까지 충분히 연구되지 않은 실정이다. 본 연구에서는 인터넷 서점에서의 가상 구매실험을 바탕으로 사용자가 구매한 책 들에서 사용자를 잘 나타낼 수 있는 자질을 선택하는 방식에 대해서 벡터 스페이스 모형, TFIDF(Term Frequency-Inverse Document Frequency), Mutual Information, SVD(Singular Value Decomposition) 방식 등을 활용하여 실험하고 그 결과를 비교해본다. 실험 결과 SVD를 응용한 자질 추출 기법이 가장 좋은 성능을 나타내었다.

One of the widely used methods for product recommendation in Internet storefronts is matching product features against target customer profiles. When using this method, it's very important to choose a suitable subset of features for recommendation efficiency and performance, which, however, has not been rigorously researched so far. In this paper, we utilize a dataset collected from a virtual shopping experiment in a Korean Internet book shopping mall to compare several popular methods from other disciplines for selecting features for product recommendation: the vector-space model, TFIDF(Term Frequency-Inverse Document Frequency), the mutual information method, and the singular value decomposition(SVD). The application of SVD showed the best performance in the analysis results.

키워드

참고문헌

  1. J. A. Konstan, B. N. Miller, et al., 'GroupLens: Applying Collaborative Filtering to Usenet News,' Communications of the ACM, Vol.40, No.3, pp.77-87, 1997 https://doi.org/10.1145/245108.245126
  2. A. Ansari, S. Essegaier, et al., 'Internet Recommendation Systems,' Journal of Marketing Research(JMR), Vol.37, No.3, pp.363-375, 2000 https://doi.org/10.1509/jmkr.37.3.363.18779
  3. W. W. Cohen and W. Fan, 'Web-collaborative Filtering: Recommending Music by Crawling the Web,' Computer Networks, Vol.3, No.1-6, pp.685-698, 2000 https://doi.org/10.1016/S1389-1286(00)00057-8
  4. G. Greco, S. Greco, et al., 'Collaborative Filtering Supporting Web Site Navigation,' AI Communications, Vol.17, No.3, pp.155-167, 2004
  5. M. Vozalis and K. G. Margaritis, 'On the Combination of User-based and Item-based Collaborative Filtering,' International Journal of Computer Mathematics, Vol.81, No.9, pp.1077-1096, 2004 https://doi.org/10.1080/03057920412331272199
  6. K. Tout, D. J. Evans, et al., 'Collaborative Filtering: Special Case in Predictive Analysis,' International Journal of Computer Mathematics, Vol.82, No.1, pp.1-11, 2005 https://doi.org/10.1080/00207160412331290702
  7. D. C. Wilson, B. Smyth, et al., 'Sparsity Reduction in Collaborative Recommendation: A Case-Based Approach,' International Journal of Pattern Recognition & Artificial Intelligence, Vol.7, No.5, pp.863-884, 2003 https://doi.org/10.1142/S0218001403002678
  8. Z. Huang, H. Chen, et al., 'Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering,' ACM Transactions on Information Systems, Vol.22, No.1, pp.116-143, 2004 https://doi.org/10.1145/963770.963775
  9. D. O. Sullivan, B. Smyth, et al., 'Preserving Recommender Accuracy and Diversity in Sparse Datasets,' International Journal of Artificial Intelligence Tools, Vol.13, No.1, pp.219-236, 2004 https://doi.org/10.1142/S0218213004001491
  10. B. Mobasher, R. Cooley, et al., 'Automatic Personalization Based on Web Usage Mining,' Communications of the ACM, Vol.43, No.8, pp.142-151, 2000 https://doi.org/10.1145/345124.345169
  11. S.-S Weng. and M.-J Liu, 'Feature-based Recommendations for One-to-one Marketing,' Expert Systems with Applications, Vol.26, No.4, pp.493-508, 2004 https://doi.org/10.1016/j.eswa.2003.10.008
  12. J. S. Deogun, S. K. Choubey, et al., 'Feature Selection and Effective Classifiers,' Journal of the American Society for Information Science, Vol.49, No.5, pp.423-434, 1998 https://doi.org/10.1002/(SICI)1097-4571(19980415)49:5<423::AID-ASI5>3.0.CO;2-0
  13. A. Al-Ani, M. Deriche, et al., 'A New Mutual Information Based Measure for Feature Selection,' Intelligent Data Analysis, Vol.7, No.1, pp.43-57, 2003
  14. D. Huang, and T. W. S. Chow, 'Effective Feature Selection Scheme Using Mutual Information,' Neurocomputing, Vol.63, No.1-4, pp.325-344, 2005 https://doi.org/10.1016/j.neucom.2004.01.194
  15. M. D. Gordon and S. Dumais, 'Using Latent Semantic Indexing for Literature Based Discovery,' Journal of the American Society for Information Science, Vol.49, No.8, pp.674-685, 1998 https://doi.org/10.1002/(SICI)1097-4571(199806)49:8<674::AID-ASI2>3.0.CO;2-Q
  16. D. L. Lee, and H. Chuang, 'Document Ranking and the Vector-space Model,' IEEE Software, Vol.4, No.2, pp.67-76, 1997 https://doi.org/10.1109/52.582976
  17. T. A. Latsche and M. W. Berry, 'Large-scale Information Retrieval with Latent Semantic Indexing,' Information Sciences, Vol.100, No.1-4, pp.105-137, 1997 https://doi.org/10.1016/S0020-0255(97)00044-3