Novel Process to Improve Defect Problems for Thermal Nanoimprint Lithography

열 나노임프린트 리소그래피를 위한 패턴의 결함 향상에 관한 실험적 연구

  • Published : 2006.05.01

Abstract

The reliability of imprint patterns molded by stamps for industrial application of nanoimprint lithography (NIL), is an important issue. Usually, defects can be produced by incomplete filling of negative patterns and the shrinkage phenomenon of polymers in conventional NIL. In this paper, the patterns that undergo a varied temperature or varied pressure period during the thermal NIL process have been investigated, with the goal of resolving the shrinkage and defective filling problems of polymers. The effects on the formation of polymer patterns in several profiles of imprint processes are also studied. Consequently, it is observed that more precise patterns are formed by the varied temperature (VT-NIL) or varied pressure (VP-NIL). The NIL (VT-NIL or VP-NIL) process has a free space compensation effect on the polymers in stamp cavities. From the results of the experiments, the polymer's filling capability can be improved. The VT-NIL is merged with the VP-NIL for the better filling property. The patterns that have been imprinted in the merged NIL are compared with the results of conventional NIL. In this study, the improvement in the reliability for results of thermal NIL has been achieved.

Keywords

References

  1. S.Y. Chou, P.R. Krauss, W. Zhang, L. GuoL. Zhuang, 'Sub-10 nm imprint lithography and applications', J. Vac. Sci. Technol. B, vol. 15, pp. 2897-2904, 1997 https://doi.org/10.1116/1.589752
  2. S.Y. Chou, P.R. Kraussand P.J. Renstrom, 'Nanoimprint lithography', J. Vac. Sci. Technol' B, vol. 14, pp. 4129-4133, 1996 https://doi.org/10.1116/1.588605
  3. L.J. Heyderman, H. Schift, C. David, J. Gobrecht and T. Schweizer, 'Flow behaviour of thin polymer films used for hot embossing lithography', Microelectron. Eng., vol. 54, pp. 229-245, 2000 https://doi.org/10.1016/S0167-9317(00)00414-7
  4. J.H. Jeong, K.D. Kim, Y.S. Sim , H.K. Sohn and E.S. Lee, 'A step-and-repeat UV-nanoimprint lithography process using an elementwise patterned stamp', Microelectron. Eng., vol. 82, 180-188, 2005 https://doi.org/10.1016/j.mee.2005.07.013
  5. H. Becker and U. Heim, 'Hot embossing as a method for the fabrication of polymer high aspect ratio structures', Sensors and Actuators, vol. 83, pp. 130-135, 2000 https://doi.org/10.1016/S0924-4247(00)00296-X
  6. P.R. Krauss and S.Y. Chou, 'Nano-cornpact disks with 400 Gbit/$in^2$ storage density fabricated using nanoimprint lithography and read with proximal probe', Appl. Phys, Lett., vol. 71, pp. 3174-3176, 1997 https://doi.org/10.1063/1.120280
  7. J.L. Charest, L.E. Bryant, A.J. Garcia and W.P. King, 'Hot embossing for micropatterned cell substrates', Biomaterials, vol. 25, pp. 4767-4775, 2004 https://doi.org/10.1016/j.biomaterials.2003.12.011
  8. C. David, P. Haberling , M. Schnieper, J. Sochtig and C. Zschokke, 'Nano-structured anti-reflective surfaces replicated by hot embossing', Microelectron. Eng., vol. 61-62, pp. 435-440, 2002 https://doi.org/10.1016/S0167-9317(02)00425-2
  9. N.S. Ong, Y.H. Koh and Y.Q. Fu, 'Microlens array produced using hot embossing process', Microelectron. Eng., vol. 60, pp. 365-379, 2002 https://doi.org/10.1016/S0167-9317(01)00695-5
  10. L. Chen, X. Deng, J. Wang, K. Takahashi, and F. Liud, 'Defect control in nanoimprint lithography', J. Vac. Sci. Technol. B, vol. 23, pp. 2933-2938, 2005 https://doi.org/10.1116/1.2130352
  11. H. Schulz, M. Wissen and H. -C. Scheer, 'Local mass transport and its effect on global pattern replication during hot embossing', Microelectron. Eng., vol. 67-68, pp. 657-663, 2003 https://doi.org/10.1016/S0167-9317(03)00128-X
  12. C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J. H. Tortai and O. Joubert, 'Influence of pattern density in nanoimprint lithography', J. Vac. Sci. Technol' B, vol' 21, pp. 98-105, 2003 https://doi.org/10.1116/1.1532735
  13. M. Beck, M. Graczyk, I. Maximov, E.-L.Sarme, T.G.I. Ling, M. Keil and L. Montelius, 'Improving stamps for 10 nm level wafer scale nanoimprint lithography', Microelectron. Eng., vol. 61-62, pp. 441-448, 2002 https://doi.org/10.1016/S0167-9317(02)00464-1
  14. C. Perret, C. Gourgon, F. Lazzarino, J. Tallal, S. Landis and R. Pelzer, 'Characterization of 8-in. wafers printed by nanoimprint lithography', Microelectron. Eng., vol. 73-74, pp. 172-177, 2004 https://doi.org/10.1016/j.mee.2004.02.036
  15. H.-C. Scheer, H. Schulz, 'A contribution to the flow behaviour of thin polymer films during hot embossing lithography', Microelectron. Eng., vol. 56, pp. 311-332, 2001 https://doi.org/10.1016/S0167-9317(01)00569-X
  16. J.D. Ferry, Viscoelastic properties of polymers, John Wiley & Sons Inc, 1980
  17. H. Schift, C. David, J. Gobrecht, A. D' Amore, D. Simoneta, W. Kaiser, M. Gabriel, 'Quantitative analysis of the molding of nanostructures', J. Vac. Sci. Technol. B, vol. 18, pp. 3564-3568, 2000 https://doi.org/10.1116/1.1324622
  18. 박형석, 최우범, 성만영, '나노임프린트 리소그래피를 위한 스케일 다운된 산화막 스탬프 제작과 패턴결함 개선에 관한 연구' 전기전자재료학회 논문지, 2호, 제19권, pp. 130-138, 2006. 2 https://doi.org/10.4313/JKEM.2006.19.2.130