Orientation, Surface Roughness and Piezoelectric Characteristics of AlN Thin Films with RF Magnetron Sputtering Conditions

RF 마그네트론 스퍼터링 공정 조건에 따른 AlN 박막의 배향성, 표면 거칠기 및 압전 특성에 관한 연구

  • Published : 2006.04.01

Abstract

AlN thin films have been fabricated by using RF magnetron sputtering method and their crystal orientations, microstructures and piezoelectric properties have been investigated with variation of the $Ar/N_2$ gas ratio and the substrate temperature. Particularly, when the $Ar/N_2$ gas ratio and the substrate temperature are 10/10 (sccm) and $400^{\circ}C$, respectively, the AlN thin film exhibits the highest (002) orientation. The result of the surface roughness measurement by using AFM shows that the surface roughness becomes better as the partial pressure of $N_2$ increases at the substrate temperature of $400^{\circ}C$ and it becomes the smallest value of 2.1 nm when $Ar/N_2$ is 0/20 (sccm). The AFM measurement also shows that when $Ar/N_2$ is 10/10 (sccm) shows that surface roughness becomes better as the substrate temperature increases from room temperature up to $300^{\circ}C$ and then it becomes worse as the substrate temperature goes up from $300^{\circ}C$. At the substrate temperature of $300^{\circ}C$ and $Ar/N_2$=10/10 (sccm), the surface roughness is 3.036 nm. The piezoelectric constant ($d_{33}$) of AlN thin film is measured by Pneumatic probe method. The measurement shows that the AlN thin film with the highest (002) orientation, fabricated at $Ar/N_2$=10/10 (sccm) and the substrate temperature of $400^{\circ}C$, has the best Piezoelectric constant ($d_{33}$) of 6.01 pC/N.

RF 마그네트론 스퍼터링 방법을 이용하여 $Ar/N_2$ 가스비와 기판 온도 변화에 따른 AlN 박막의 배향성과 표면 거칠기 그리고 압전 특성의 변화를 조사하였다. 특히, $Ar/N_2$=10/10 (sccm), 기판 온도 $400^{\circ}C$ 일 때 가장 우수한 (002) 배향성을 얻을 수 있었다. AFM 을 이용하여 표면 거칠기를 분석한 결과, 기판 온도 $400^{\circ}C$ 인 경우 $Ar/N_2$ 가스비의 변화에 대해서는 $N_2$의 분압비가 증가할수록 표면 거칠기 특성이 좋아지는 것으로 나타났으며 $Ar/N_2$=0/20 (sccm) 일 때 2.1 nm 로 가장 작은 값을 나타내었다. $Ar/N_2$=10/10 (sccm) 인 조건에서 기판 온도 변화에 대한 표면 거칠기 특성은 기판 온도가 상온에서 $300^{\circ}C$ 로 증가함에 따라 향상되는 경향을 보였으며, $300^{\circ}C$ 에서 3.036 nm 로 최소값을 나타낸 후, 기판 온도가 $300^{\circ}C$ 이상으로 상승하면 표면 거칠기는 다시 열악해지는 것을 확인할 수 있었다. Pneumatic probe 방법을 이용하여 압전 특성을 측정한 결과, $Ar/N_2$=10/10 (sccm), 기판 온도 $400^{\circ}C$ 일 때 Piezoelectric constant ($d_{33}$)=6.01 pC/N 이라는 가장 우수한 값을 나타내었으며, 이는 AlN 박막이 가장 좋은 (002) 배향성을 갖는 조건과 일치하는 것이다.

Keywords

References

  1. A. Fathimulla, Amir A. Lakhani, 'Reactively rf magnetron sputtered AlN films as a gate dielectric', J. Appl. Phys., Vol. 54, No.8, August 1983 https://doi.org/10.1063/1.332661
  2. H. P. Lobi, M. Klee, R. Milsom, R. Dekker, C. Metzmacher, W. Brand, P. Lok, 'Materials for bulk acoustic wave (BAW) resonator and filters', J. Europ. Ceram Soc., Vol. 21, pp. 2633-2640, 200l https://doi.org/10.1016/S0955-2219(01)00329-6
  3. D. Y. Wang, Y. Nagahata, M. Masuda and Y. Hayashi, 'Effect of nonstoichiometry upon optical properties of radio frequency sputtered Al-N thin films formed at various sputtering pressures', J. Vac. Sci. Tedinol. A, Vol. 14, No. 6, pp.3092-3099, 1996 https://doi.org/10.1116/1.580177
  4. T. Hsiosaki, K. Harada and A. Kawabata, 'Low- Temperature Growth of Piezoelectric AlN Film and its Optical and Acoustical Properties', Jpn J. Appl. Phys., Vol. 21, pp. 69-71, 1982 https://doi.org/10.7567/JJAPS.21S3.69
  5. V. I. Dimitrova, D. I. Munova, and D. A. Dechev, 'Study of reactive DC magnetron sputtering deposition of AlN thin films', Vacuum, Vol. 49, No.3, p 193, 1998 https://doi.org/10.1016/S0042-207X(97)00128-0
  6. B. N. Hwang, C. S. Chen, H. Y. Lu, and T. C. Hsu, 'Growth mechanism of reactively sputtered aluminium nitride thin films', Mater. Sci. & Eng., Vol. A325, p. 380, 2002 https://doi.org/10.1016/S0921-5093(01)01477-0
  7. R. G. Gordon and U. Riaz, 'Chemical vapor deposition of aluminium nitride thin films', J. Mater. Res., Vol. 7, No.7, p. 1679, 1992 https://doi.org/10.1557/JMR.1992.1679
  8. F. hasegowa, T. Takahashi, K. Kubo, and Y. Nannichi, 'Plasma CVD of amorphous AlN from metalorganic Al source and properties of the deposited films', Jpn. J. Appl. Phys.,Vol. 26, No. 9, p. 1555, 1987
  9. X. H. Xu, H. S. Wu, C. J. Zhang, Z. H. Jin, 'Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering', Thin Solid Films, Vol. 388, pp. 62-67, 2001 https://doi.org/10.1016/S0040-6090(00)01914-3
  10. C. R. Aita, R. J. Lad, and T. C. Tisane, 'The effect of RF power on sputtered zinc oxide', J. Appl. Phys., Vol. 51, No. 12, p 5405, 1980
  11. D. G. Kim, 'Piezoelectric properties of lead zirconate titanate thin films characterized by the pneumatic loading method', Integrated Ferroelectrics, Vol. 24, pp. 107, 1999 https://doi.org/10.1080/10584589908215583
  12. Landolt-Bornstein, 'Numerical Data and Functional Relationships in Science and Technology', Group III, Vol. 11. Springer-Verlag, Berlin, 1979
  13. G. T. Park, J. J. Choi, J. Ryu, H Fan, H E. Kim 'Measurement of piezoelectric coefficients of lead zirconate titanate thin film by strain-monitoring pneumatic loading method', Appl. Phys. Lett, Vol. 80. pp. 4606-4608. 2002 https://doi.org/10.1063/1.1487901
  14. R. S. Naik, R. Rief, J. J. Lutsky, C. G. Sodini, J. Electro-Chem Soc., Vol. 146, p, 691, 1999 https://doi.org/10.1149/1.1391664