Structure and Properties of the Organoclay Filled NR/BR Nanocomposites

  • Kim Won-Ho (Department of Chemical Eng., Pusan National University) ;
  • Kim Sang-Kwon (Department of Chemical Eng., Pusan National University) ;
  • Kang Jong-Hyub (Department of Chemical Eng., Pusan National University) ;
  • Choe Young-Sun (Department of Chemical Eng., Pusan National University) ;
  • Chang Young-Wook (Department of Chemical Eng., Hanyang University)
  • 발행 : 2006.04.01

초록

Organoclay, was applied as a filler, in place of carbon black and silica, to a natural rubber (NR)/butadiene rubber (BR) blend. A compounding method was used to disperse and separate the layered silicates. The effect of a coupling agent on the vulcanizates was evaluated using both the silica and organoclay filled compounds. After the compounding processes were completed, the XRD diffraction peaks disappeared, but then reappeared after vulcanization. The scorch times for the organoclay-filled compounds were very short compared to those for carbon black and silica-filled compounds. The organoclay-filled compounds showed high values of tensile strength, modulus, tear energy, and elongation at the break. When ranked by viscosity, the compounds appeared in the following order: silica > silica (Si-69) > organoclay > organoclay (Si-69) > carbon black. Fractional hysteresis, tensile set, and wear rates were very consistent with the viscosity of the vulcanizates. The Si 69 coupling agent increased reversion resistance, the maximum torque values in the ODR, modulus, and wear resistance, but decreased elongation at the break, fractional hysteresis, and tension set of the vulcanizates.

키워드

참고문헌

  1. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1174 (1993) https://doi.org/10.1557/JMR.1993.1174
  2. A. Okada, Y. Kojima, M. Kawasumi, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993) https://doi.org/10.1557/JMR.1993.1179
  3. S. S. Ray and M. Okamoto, Progress in Polymer Science, 28, 1539 (2003)
  4. Y. T. Vu, J. E. Mark, L. H. Pham, and M. Enhelhardt, J. Appl. Polym. Sci., 82, 1391 (2001) https://doi.org/10.1002/app.1976
  5. S. S. Ray and A. K. Bhowmick, Rubber Chem. Technol., 74, 835 (2001) https://doi.org/10.5254/1.3547656
  6. S. Joly, G. Garnaud, R. Ollitrault, L. Bokobza, and J. E. Mark, Chem. Mater., 14, 4202 (2002) https://doi.org/10.1021/cm020093e
  7. S. Sadhu and A. K. Bhowmick, J. Appl. Polym. Sci., 92, 698 (2004) https://doi.org/10.1002/app.13673
  8. S. Sadhu and A. K. Bhowmick, J. Polym. Sci.; Part B: Polym. Phys., 42, 1573 (2004) https://doi.org/10.1002/polb.20036
  9. M. Arroyo, M. A. Lopez-Manchado, and B. Herrero, Polymer, 44, 2447 (2003) https://doi.org/10.1016/S0032-3861(03)00090-9
  10. S. Varghese and J. Karger-Kocsis, J. Appl. Polym. Sci., 91, 813 (2004) https://doi.org/10.1002/app.13173
  11. P. L. Teh, Z. A. Mohd Ishak, A. S. Hashim, J. Karger-Kocsis, and U. S. Ishiaku, J. Appl. Polym. Sci., 94, 2438 (2004) https://doi.org/10.1002/app.21188
  12. M. Ganter, W. Gronski, P. Reichert, and R. Mulhaupt, Rubber Chem. Technol., 74, 221 (2002)
  13. S. H. Wang, Z. L. Peng, Y. Zhang, and Y. X. Zhang, Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21-25, Volume B, pp 257-263
  14. C. Nah, H. J. Ryu, W. D. Kim, and Y. W. Chang, Polym. Int., 52, 1359 (2003) https://doi.org/10.1002/pi.1227
  15. J. T. Kim, T. S Oh, and D. H. Lee, Polym. Int., 52, 1058 (2003) https://doi.org/10.1002/pi.1110
  16. N. Hasegawa, H. Okamoto, and A. Usuki, J. Appl. Polym. Sci., 93, 758 (2004) https://doi.org/10.1002/app.20546
  17. H. Zheng, Y. Zhang, Z. Peng, and Y. Zhang, J. Appl. Polym. Sci., 92, 638 (2004) https://doi.org/10.1002/app.13560
  18. J. Ma, P. Xiang, Y. W. Mai, and L. Q. Zhang, Macromol. Rapid Comm., 25, 1692 (2004) https://doi.org/10.1002/marc.200400286
  19. Y. Q. Wang, H. F. Zhang, Y. P. Wu, J. Wang, and L. Q. Zhang, Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21-25, Volume B, pp 420-425
  20. H. F. Zhang, Y. Q. Wang, Y. P. Wu, L. Q. Zhang, J. Yang, and X. F. Wang, Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21-25, Volume B, pp 240-246
  21. Y. P. Wu, Q. X. Jia, D. S Yu, and L. Q. Zhang, J. Appl. Polym. Sci., 89, 3855 (2003) https://doi.org/10.1002/app.12568
  22. L. Q. Zhang, Y. Z. Wang, Y. Q. Wang, Y. A. Sui, and D. S. Yu, J. Appl. Polym. Sci., 78, 1873 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8
  23. Y. Z. Wang, L. Q. Zhang, C. H. Tang, and D. S. Yu, J. Appl. Polym. Sci., 78, 1879 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1
  24. G. Heideman, R. N. Datta, Z. W. M. Noordermeer, and B. Baarle, Rubber Chem. Technol., 77, 512 (2004) https://doi.org/10.5254/1.3547834
  25. M. J. Wang, P. Zang, and K. Mahamud, Rubber Chem. Technol., 74, 124 (2001) https://doi.org/10.5254/1.3547633
  26. L. Mullin, J. Phys. Chem., 54, 239 (1950) https://doi.org/10.1021/j150476a006
  27. W. W. Barbin and M. B. Rodger, in Science and Technology of Rubber, 2nd ed., J. E. Mark, B. Erman, and F. R. Eirich, Eds., Academic Press, New York, 1994, chap. 9, pp 457