Pretreatment of Feedstock by Ion Exchange Resin Catalyst in Biodiesel process

바이오디젤 공정에서 이온교환수지 촉매에 의한 원료유의 전처리

  • Lee Soo-Gon (Department of Chemical Engineering, University of Seoul) ;
  • Chae Hee-Jeong (Department of Food and Biotechnology and Department of Innovative Industrial Technology, Hoseo University) ;
  • Yoo Jeong-Woo (Neo Energy Co. Ltd.) ;
  • Kim Eui-Yong (Department of Chemical Engineering, University of Seoul)
  • 이수곤 (서울시립대학교 화학공학과) ;
  • 채희정 (호서대학교 식품생물공학 및 벤처전문대학원) ;
  • 유정우 ((주) 신한에너지) ;
  • 김의용 (서울시립대학교 화학공학과)
  • Published : 2006.02.01

Abstract

Free fatty acids are not esterified by alkaline catalyst transesterification. They are detrimental to the quality specifications in biodiesel. Therefore, we tried to find solid catalyst to remove free fatty acids in feedstock. Amberlyst 15 resin was selected as the best catalyst, and the moisture content containing in the resin was found to be important for the reaction. The removal efficiency of free fatty acids was gradually decreased from 97% to 70% by ten times reuse of resin. In the transesterificaion reaction by KOH catalyst, soap formation could be decreased by 58.3% using the feedstock pretreated by resin. Consequently, the purity of biodiesel was enhanced about 10%, as compared with the non-treated feedstock.

유리지방산은 염기촉매에 의해 바이오디젤로 전환이 되지 않기 때문에 바이오디젤 제품의 질을 저하시키는 원인이 된다. 따라서 본 연구에서는 원료유 중에 존재하는 유리지방산을 제거할 수 있는 고체 촉매를 찾고자 하였다. Amberlyst 15 수지가 최상의 촉매였으며, 수지 내 수분의 함량이 반응에 큰 영향을 주었다. 10회까지 수지를 반복하여 사용한 결과 유리지방산의 제거율이 97%로부터 70%까지 점차적으로 감소하였다. KOH에 의한 바이오디젤 생성반응에서 수지로 전처리한 원료유를 사용하게 되면 전처리하지 않은 원료유를 사용했을 때 비하여 58.3%까지 비누의 생성을 줄일 수 있었으며, 결과적으로 바이오디젤의 순도를 약 10% 향상시킬 수 있었다.

Keywords

References

  1. www.biodiesel.org (2005)
  2. www.biodiesel.com (2005)
  3. http://neoenergy.co.kr (2005)
  4. Mittelbach, M. (2002), Experience with biodiesel from used frying oil in Austria, Paper presented at New and Renewable Energy Workshop, Seoul, Korea
  5. Shay, E. G. (1993), Diesel fuel from vegetable oils: status and opportunities, Biomass and Bioenergy 4, 227-242 https://doi.org/10.1016/0961-9534(93)90080-N
  6. Ma, F. and M. A. Hanna (1999), Biodiesel production: a review, Bioresource Technology 70, 1-15 https://doi.org/10.1016/S0960-8524(99)00025-5
  7. Falk, O. and M. Roland (2004), The effect of fatty acid composition on biodiesel oxidative stability, Eur. J. Lipid Sci. Technol. 106, 837-843 https://doi.org/10.1002/ejlt.200400978
  8. Freedman, B., E. H. Pryde, and T. L. Mounts (1984), Variables affecting the yields of fatty esters from transesterified vegetable oils, J. Am. Chem. Soc. 61, 1638-1643 https://doi.org/10.1007/BF02541649
  9. Haas, M. J. (2004), The interplay between feedstock quality and esterification technology in biodiesel production, Lipid Technology 16(1), 7-11
  10. Keim, G. I. (1945), Process for treatment of fatty glycerides, US Patent 2, 383-601
  11. Gustone, F. D. (1996), Fatty Acid and Lipid Chemistry, p207, Chapman & Hall, UK
  12. http://www.rohmhaas.com/ionexchange/IP/sac.htm (2005)
  13. http://www.samyang.com (2005)