Selection of Biofilter Support for Removing MEK

MEK 제거를 위한 바이오필터용 담체의 선택

  • Jeong Gwi-Taek (School of Biological Science and Technology, Chonnam National University) ;
  • Lee Gwang-Yeon (School of Biological Science and Technology, Chonnam National University, Department of Ophthalmic Optics, Dong-A College) ;
  • Lee Kyoung-Min (School of Biological Science and Technology, Chonnam National University) ;
  • Sunwoo Chang-Shin (School of Biological Science and Technology, Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Lee Woo-Tae (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Jung Seong-Ho (Korea Testing and Research Institute for Chemical Industry) ;
  • Cha Jin-Myoung (B & E Tech Co., Ltd., Business Incubator Center, Gwangju University) ;
  • Jang Young-Seon (B & E Tech Co., Ltd., Business Incubator Center, Gwangju University) ;
  • Park Don-Hee (School of Biological Science and Technology, Faculty of Applied Chemical Engineering, Biotechnology Research Institute, Research Institute for Catalysis, Chonnam National University)
  • 정귀택 (전남대학교 생명과학기술학부) ;
  • 이광연 (전남대학교 생명과학기술학부, 동아인재대학 안광학과) ;
  • 이경민 (전남대학교 생명과학기술학부) ;
  • 선우창신 (전남대학교 생명과학기술학부, 응용화학공학부) ;
  • 이우태 (전남대학교 응용화학공학부) ;
  • 정승호 (한국화학시험연구원) ;
  • 차진명 (비앤이테크(주)) ;
  • 장영선 (비앤이테크(주)) ;
  • 박돈희 (전남대학교 생명과학기술학부, 응용화학공학부, 생물공학연구소, 촉매연구소)
  • Published : 2006.02.01

Abstract

The aim of this study is the development of biological removal process of methyl ethyl ketone (MEK) in odor gas, which is generated from the waste food recycling process. To develop the removal process of odor gas, MEK, the selection of proper biofilter support was carried out. When the biofilter equipment was passed by synthetic odor gas composed of 250 ppm of MEK, the maximum removal was achieved to $586.6g-MEK/m^3\;hr$ for polypropylene fibril as support. Under the same experimental conditions, the maximum removal in polyurethane support was obtained to $359.7 g-MEK/m^3\;hr$. Finally, the maximum removal in volcanic stone support was $56.2g-MEK/m^3\;hr$.

본 악취제거용 바이오필터에 필요한 담체에 대하여 실험한 결과 다음과 같은 결론을 얻었다. 합성악취가스의 조성이 MEK 250 ppm을 바이오필터에 통과시켰을 때, 폴리프로필렌 섬유상은 $586.6g-MEK/m^3\;hr$로 실험담체 중에서 최고 제거량을 나타내었다. 폴리우레탄 담체는 $359.7g-MEK/m^3\;hr$을 제거용량을 나타내었다. 화산석 담체의 제거량은 $56.2g-MEK/m^3\;hr$으로 평가되었다. 본 연구에서 사용한 담체 중에서 MEK 제거에 사용될 수 있는 최적의 담체로는 폴리플로필렌 섬유상 담체로 평가되었다.

Keywords

References

  1. Edwards, F. G. and N. Nirmalakjandan (1996), Biological treatment of airsteams contaminated with VOCs: an overview, Water Science and Technology 34(3-4), 565-571 https://doi.org/10.1016/0273-1223(96)00597-5
  2. Altaf Wani, H., M. R. Branion Richard, and K. Lau Anthony (1997), Biofiltration : A promising and cost-effective control technology for odors, VOCS and air toxics, J. Environ. Sci. Health, A32(7), 2027-2055
  3. Dragt, A. J. (1992), in A. J. Dragt and J. Van Ham, eds., Biotechniques for Air Pollution Abatement and Odour Control Policies, Elsevier Science Publishers, Amsterdam, pp3-9
  4. Weber, F. J. and S. Hartmans (1992), in A. J. Dragt and J. van Hameds., Biotechniques for Air Pollution Abatement and Odour Control Policies, Elsevier, Amsterdam, pp125-130
  5. Cohen. Y. (2001), Biofiltration - the treatment of fluids by microorganisms immobilized into the filter bedding material: a review, Bioresource Technology 77(3), 257-274 https://doi.org/10.1016/S0960-8524(00)00074-2
  6. Korea Ministry of Environment (1997), Food waste management policy, technology trends, and practice examples of its reduction and resource recovery, pp. 17-23
  7. Jorio, H. and M. Heitz (1999), Biofiltration of air, Canadian Journal of Civil Engineering 26(4), 402-424 https://doi.org/10.1139/cjce-26-4-402
  8. Devinny, J. S., T. S. Webster, E. Torres, and S. Basrai (1995), Biofiltration for removal of PCE and TCE vapors from contaminated air, Hazardous Waste Hazardous Mater. 12(3), 233-293 https://doi.org/10.1089/hwm.1995.12.233
  9. Webster, T. S., J. S. Webster, E. Torres, and S. S. Basrai (1997), Microbial ecosystems in compost and granular activated carbon biofilters, Biotechnol Bioeng. 53(3), 296-303 https://doi.org/10.1002/(SICI)1097-0290(19970205)53:3<296::AID-BIT8>3.0.CO;2-D
  10. Kommission Reinhaltung der Luft (1991), Biological Waste Gas / Waste Air Purification, Biofilters, VDI verlag, In Verein Deutscher In genieure ed., VDI 3477-Handbuch Reinhaltung der Luft: Band 6, p1-29, Dusseldorf
  11. Leson, G. and B. J. Smith (1997), Petroleum environmental research forum field study on biofilters for control of volatile hydrocarbons, Journal of Environmental Engineering-ASCE 123(6), 556-562 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(556)
  12. Swanson, W. J. and R. C. Loehr (1997), Biofilteration : Fundamentals, Design and Operations Principles, and Applications, Journal of Environmental Engineering 123(6), 538-546 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(538)
  13. Webster, T. S., H. H. J. Cox and M. A. Deshusses (1999), Resolving operational and performance problems encountered in the use of a pilot/full-scale biotrickling fiber reactor, Environmental Progress 18(3), 162-172 https://doi.org/10.1002/ep.670180312
  14. Jeong, G. T. et al. (2005), Isolation and characterization of odor treatment bacteria, Kor. J. Biotechnol. Bioeng. 20(5), 345-349
  15. Wright, D. F. and E. D. Schroede (1997), Performance of a pilot-scale compost biofilter treating gasoline vapor, Journal of Environmental Engineering 123(6), 547-555 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(547)