A Bio-fluidic Device for Adaptive Sample Pretreatment and Its Application to Measurements of Escherichia coli Concentrations

  • Choi Won-Jae (Department of BioSystems, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park Je-Kyun (Department of BioSystems, Korea Advanced Institute of Science and Technology (KAIST))
  • 발행 : 2006.01.01

초록

In this paper, we describe a bio-fluidic device for adaptive sample pretreatment, in order to optimize the conditions under which absorbance assays can be conducted. This device can be successfully applied to the measurement of Escherichia coli (E. coli) concentrations using adaptive dilution, with which the dilution ratio can be adjusted during the dilution. Although many attempts have been previously made to miniaturize complex biochemical analyses at the chip scale, very few sample pretreatment processes have actually been miniaturized or automated at this point. Due to the lack of currently available on-chip pretreatments, analytical instruments tend to suffer from a limited range of analysis. This occasionally hinders the direct and quantitative analysis of specific analyses obtained from real samples. In order to overcome these issues, we exploit two novel strategies: dilution with a programmable ratio, and to-and-fro mixing. The bio-fluidic device consists of a rectangular chamber constructed of poly(dimethylsiloxane) (PDMS). This chamber has four openings, an inlet, an outlet, an air control, and an air vent. Each of the dilution cycles is comprised of four steps: detection, liquid drain, buffer injection, and to-and-fro mixing. When using adaptive sample pretreatment, the range in which E. coli concentrations can be measured is broadened, to an optical density (O.D.) range of $0.3{\sim}30$. This device may prove useful in the on-line monitoring of cell concentrations, in both fermenter and aqueous environments.

키워드

참고문헌

  1. Reyes, D. R., D. Iossifidis, P.-A. Auroux, and A. Manz (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74: 2623-2636 https://doi.org/10.1021/ac0202435
  2. Vilkner, T., D. Janasek, and A. Manz (2004) Micro total analysis systems. Recent developments. Anal. Chem. 76: 3373-3385 https://doi.org/10.1021/ac040063q
  3. Tüdos, A. J., G. A. J. Besselink, and R. B. M. Schasfoort (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1: 83-95 https://doi.org/10.1039/b106958f
  4. Voldman, J., M. L. Gray, and M. A. Schmidt (2004) Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1: 401-425 https://doi.org/10.1146/annurev.bioeng.1.1.401
  5. Kricka, L. J. (1998) Miniaturization of analytical systems. Clin. Chem. 44: 2008-2014
  6. Ekins, R. P. (1998) Ligand assays: from electrophoresis to miniaturized microarrays. Clin. Chem. 44: 2015-2030
  7. Mitchell, P. (2002) A perspective on protein microarrays. Nat. Biotechnol. 20: 225-229 https://doi.org/10.1038/nbt0302-225
  8. Yang, J., Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal. Chem. 71: 911-918 https://doi.org/10.1021/ac981250p
  9. Bousse, L., S. Mouradian, A. Minalla, H. Yee, K. Williams, and R. Dubrow (2001) Protein sizing on a microchip. Anal. Chem. 73: 1207-1212 https://doi.org/10.1021/ac0012492
  10. Mitchell, P. (2001) Microfluidics downsizing large-scale biology. Nat. Biotechnol. 19: 717-721 https://doi.org/10.1038/90754
  11. de Mello, A. J. and N. Beard (2003) Dealing with real samples: sample pre-treatment in microfluidic systems. Lab Chip 3: 11N-19N https://doi.org/10.1039/b209579n
  12. Novic, M., I. Berregi, A. Ríos, and M. Valcárcel (1999) A new sample-injection/sample-dilution system for the flow-injection analytical technique. Anal. Chim. Acta 381: 287-295 https://doi.org/10.1016/S0003-2670(98)00705-3
  13. Cunningham, D. D. (2001) Fluidics and sample handling in clinical chemical analysis. Anal. Chim. Acta 429: 1-18 https://doi.org/10.1016/S0003-2670(00)01256-3
  14. Verpoorte, E. (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23: 677-712 https://doi.org/10.1002/1522-2683(200203)23:5<677::AID-ELPS677>3.0.CO;2-8
  15. Erickson, D. and D. Li (2004) Integrated microfluidic devices. Anal. Chim. Acta 507: 11-26 https://doi.org/10.1016/j.aca.2003.09.019
  16. Bessoth, F. G., A. J. de Mello, and A. Manz (1999) Microstructure for efficient continuous flow mixing. Anal. Commun. 36: 213-215 https://doi.org/10.1039/a902237f
  17. Yun, K.-S. and E. Yoon (2004) Microfluidic components and bio-reactors for miniaturized bio-chip applications. Biotechnol. Bioprocess Eng. 9: 86-92 https://doi.org/10.1007/BF02932989
  18. Min, J., J.-H. Kim, and S. Kim (2004) Microfluidic device for bio analytical systems. Biotechnol. Bioprocess Eng. 9: 100-106 https://doi.org/10.1007/BF02932991
  19. Stroock, A. D., S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides (2002) Chaotic mixer for microchannels. Science 295: 647-651 https://doi.org/10.1126/science.1066238
  20. Lu, L.-H., K. S. Ryu, and C. Liu (2002) A magnetic microstirrer and array for microfluidic mixing. J. Microelectromech. Syst. 11: 462-469 https://doi.org/10.1109/JMEMS.2002.802899
  21. Chung, Y. C., Y.-L. Hsu, C.-P. Jen, M.-C. Lu, and Y.-C. Lin (2004) Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber. Lab Chip 4: 70-77 https://doi.org/10.1039/b310848c
  22. Paik, P., V. K. Pamula, and R. B. Fair (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3: 253-259 https://doi.org/10.1039/b307628h
  23. Srinivasan, V., V. K. Pamula, and R. B. Fair (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507: 145-150 https://doi.org/10.1016/j.aca.2003.12.030
  24. Fowler, J., H. Moon, and C.-J. Kim (2002) Enhancement of mixing by droplet-based microfluidics. Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems. January 20-24. Las Vegas, Nevada, USA. pp. 97-100
  25. Xia, Y. and G. M. Whitesides (1998) Soft lithography. Angew. Chem. Int. Ed. 37: 550-575 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  26. Choi, O. Z., J. Yu, and J.-K. Park (2004) To-and-fro mixing in micro/nano-fluidic channel. Proceedings of 2nd International Symposium on Nanomanufacturing. November 3-5. Daejeon, Korea. pp. 202-205
  27. O'Neil, M. J., A. Smith, and R. E. Heckelman (2001) The Merck Index. 13th ed., pp. 799. Merck, NJ, USA
  28. Kovacs, G. T. A. (1998) Micromachined Transducers Sourcebook. pp. 783. McGraw-Hill, New York, NY, USA
  29. Truskey, G. A., F. Yuan, D. F. Katz (2004) Transport Phenomena in Biological Systems. pp. 103. Prentice Hall, NJ, USA
  30. Yoon, S.-H., C. Li, Y.-M. Lee, S.-H. Lee, S.-H. Kim, M.-S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, and S.-W. Kim (2005) Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol. Bioprocess Eng. 10: 378-384 https://doi.org/10.1007/BF02931859
  31. Ingle, J. D. and S. R. Crouch (1972) Evaluation of precision of quantitative molecular absorption spectrometric measurements. Anal. Chem. 44: 1375-1386 https://doi.org/10.1021/ac60316a010
  32. Rothman, J. D., S. R. Crouch, and J. D. Ingle (1975) Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry. Anal. Chem. 47: 1226-1233 https://doi.org/10.1021/ac60358a029