References
- Gu, C. (1990). Adaptive spline smoothing in non Gaussian regression models. Journal of American Statistical Association, Vol. 85, 801-807 https://doi.org/10.2307/2290018
- Gu, C. (1992). Cross-validating non-Gaussian data. Journal of Computational Graphics and Statistics, Vol. 1, 169-179 https://doi.org/10.2307/1390840
- Gu, C. (2002). Smoothing Spline ANOVA Models. New York: Springer-Verlag
- Gu, C. and Kim, Y.J. (2002). Penalized likelihood regression: General formulation and efficient approximation. Canadian Journal of Statistics, Vol. 30, 619-628 https://doi.org/10.2307/3316100
- Gu, C. and Xiang, D. (2001). Cross-validating non-Gaussian data: Generalized approximate cross-validation revisited. Journal of Computational Graphics and Statistics, Vol. 10, 581-591 https://doi.org/10.1198/106186001317114992
- Kim, Y.J. (2005). Computation and Smoothing parameter selection in Penalized likelihood regression. The Korean Communications in Statistics, Vol. 12, 743-758 https://doi.org/10.5351/CKSS.2005.12.3.743
- Kim, Y.J. and Gu, G. (2004). Smoothing spline Gaussian regression: More scalable computation via efficient approximation. Journal of Royal Statistical Society Series B, Vol. 66, 337-356 https://doi.org/10.1046/j.1369-7412.2003.05316.x
- Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regression. Journal of Royal Statistical Society Series B, Vol. 40, 364-372
- Wahba, G. (1983). Bayesian 'confidence intervals' for the cross-validated smoothing spline. Journal of Royal Statistical Society Series B, Vol. 45, 133-150
- Wahba, G. (1990). Spline Models for Observational Data, Vol 59 of CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia: SIAM
- Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statistical Sinica, Vol. 6 675-692