DOI QR코드

DOI QR Code

Development of Diagnostic System for FHR Monitering by Using Neural Networks

  • Cha Kyung-Joon (Dept. of Mathematics, Hanyang University) ;
  • Park Moon-Il (Dept. of Obstetrics & Gynecology, Hanyang University) ;
  • Oh Jae-Eung (Dept. of Mechanical Engineering, Hanyang University) ;
  • Han Hyun-Ju (Dept. of Obstetrics & Gynecology, Hanyang University) ;
  • Lee Hae-Jin (Dept. of Mechanical Engineering, Hanyang University) ;
  • Park Young-Sun (Dept. of Mechanical Engineering, Hanyang University)
  • Published : 2006.04.01

Abstract

In this paper, we construct data-base for fetal heart rate (FHR) data and develop the FHR Monitering system to diagnose fetus, HYFM-III. For diagnostic system, a few statistical decision making mechanism are adopted, such as approximate entropy, neural networks, and logistic discrimination. Since FHR data is very chaotic, we mostly adopt nonlinear statistical methods. On the basis of this system, we expect to develop expert system for early detection of abnormal fetus.

Keywords

References

  1. 정경미, 배종운, 박문일, 이재억, 김선일, 고승권 (1999). 음향자극후 태아심박동의 컴퓨터를 이용한 분석, 대한산부인과학회지, Vol. 42, 2684-2689
  2. Ansakorpi, H., Korpelainen, J.T., Huikuri, H.V., Tolonen U, Myllyla V.V., Isojarvi J.I.. (2002). Heart rate dynamics in refractory and well controlled temporal lobe epilepsy. Journal of neurology, neurosurgery, Development of Diagnostic System 87 and psychiatry, Vol. 72, 26-30 https://doi.org/10.1136/jnnp.72.1.26
  3. Davidson S.R., Rankin J.H.G., Martin C.B.J., Reid D.L. (1992). Fetal heart rate variability and behavior state: analysis by power spectrum. American journal of obstetrics and gynecology, Vol. 167, 717-722 https://doi.org/10.1016/S0002-9378(11)91577-4
  4. Dawes, G.S., Redman, C.W.G., and Smith, J.H. (1985). Improvements in the registration and analysis of fetal heart records at the bed side. British journal of obstetrics and gynaecology, Vol. 92, 317-325 https://doi.org/10.1111/j.1471-0528.1985.tb01103.x
  5. Devoe L.D., Castillo R., Saad S., McKenzie J., Searle N., Davis H. (1986). Percent acceleration time: A new method of fetal assessment. Obstetrics and gynecology, Vol. 67, 191-196 https://doi.org/10.1097/00006250-198602000-00007
  6. Geirsson, R.T., Persson, P.H. (1984). Diagnosis of intrauterine growth retardation using ultrasound. Clinical obstetrics and gynecology, Vol. 11, 457-479
  7. Haapaniemi T.H., Pursiainen V., Korpelainen J.T., Huikuri H.V., Sotaniemi K.A., Myllyla V.V. (2001). Ambulatory ECG and analysis of heart rate variability in Parkinson's disease. Journal of neurology, neurosurgery, and psychiatry, Vol. 70, 305-310 https://doi.org/10.1136/jnnp.70.3.305
  8. Harvey D., Prince J., Bunton J., Parkinson C., Campbell S. (1982). Abilities of children who were small for gestational age babies. Pediatrics, Vol. 69, 296-300
  9. Jung, H.D. (1979). Computer analysis of state related heart rate baseline and macrofluctuation patterns. Journal of perinatal medicine, Vol. 7, 134-148 https://doi.org/10.1515/jpme.1979.7.3.134
  10. Lee, A., Claudia Ulbricht, Dorffner, G. (1999). Application of artificial neural networks for detection of abnormal fetal heart rate pattern: a comparison with conventional algorithms. Journal of obstetrics & gynecology, Vol. 19, 482-485 https://doi.org/10.1080/01443619964256
  11. Lee, J.Y, Lee, Y.W. (2005). Data Mining Model Approach for The Risk Factor of BMI By Medical Examination of Health Data. The Korean Communications in Statistics, Vol. 12, 217-227 https://doi.org/10.5351/CKSS.2005.12.1.217
  12. Maeda K., Utsu M., Makio A., Serizawa M., Noguchi Y., Hamada T., Mariko K., Matsumoto F. (1998). Neural Network computer Analysis of Fetal Heart Rate. Journal of maternal-fetal investigation, Vol. 8, 163-171
  13. Michie, D., Spiegelhalter, D.J., and Taylor, C.C. (1994). Machine Learning, Neural and Statistical Classification. Ellis Horwood
  14. Neilson, J.P., Munjanja, S.P., Whitfield, C.R. (1984). Screening for small for dates fetuses: A controlled trial. British medical journal, Vol. 289, 1179-82 https://doi.org/10.1136/bmj.289.6453.1179
  15. Packard, N.H., Crutchfield, J.P., Farmer, J.D., and Shaw, R.S. (1980). Geometry from a Time Series. Physical review letters. Vol. 45. 712-716 https://doi.org/10.1103/PhysRevLett.45.712
  16. Park M.I., Hwang J.H., Cha K.J., Park Y.S., Koh S.K. (2001). Computerized analysis of fetal heart rate parameters by gestational age. International journal of gynecology & obstetrics. Vol. 74, 157-164 https://doi.org/10.1016/S0020-7292(01)00423-4
  17. Park, Y.S., Choi, H.S., Cha, K.J., Park, M.I. (2005). Development of Discriminant Model of PIH Pregnant using Decision Tree. Journal of the Korean Data & Information Science Society, Vol. 16, 41-50
  18. Pincus, S. (1991). Approximate Entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, Vol. 88, 297-301
  19. Pincus, S. (1992). Approximating Markov chains. Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, 4432-36
  20. Pincus, S. and Goldberger, A. (1994). Physiological time-series analysis: What does regularity quantify- The American journal of physiology, Vol. 266, 1643-56
  21. Redman, C.W.G. (1993). Communicating the significance of the fetal heart rate record to the user. British journal of obstetrics and gynecology, Vol. 100, 24-27 https://doi.org/10.1111/j.1471-0528.1993.tb10632.x
  22. Rumelhart, D.E., McClelland, J.L., (1986). Parallel distributed computing: exploration in the microstructure of cognition, Cambridge, MA MIT Press
  23. Searle J.R., Devoe L.D., Phillips M.C., Searle N.S. (1988). Computerized analysis of resting fetal heart rate tracings. Obstetrics and gynecology, Vol. 71, 407-411
  24. Siira S.M., Ojala T.H., Vahlberg T.J, Jalonen J.O., Valimaki I.A., Rosen K.G., Ekholm E.M. (2005). Marked fetal acidosis and specific changes in power spectrum analysis of fetal heart rate variability recorded during the last hour of labour. British journal of obstetrics and gynecology, Vol. 112, 418-423 https://doi.org/10.1111/j.1471-0528.2004.00454.x
  25. Simon, R. (1999). Neural networks: A Comprehensive Foundation (2nd Edition). Prentice Hall
  26. Takens, F. (1980). Detecting Strange Attractors in Turbulence, volume 898 of Lecture Notes in Mathematics (Dynamical Systems and Turbulance, Warwick). 366-381
  27. Vorherr, H. (1982). Factors influencing fetal growth. American journal of obstetrics and gynecology, Vol. 142, 577-588 https://doi.org/10.1016/0002-9378(82)90765-7
  28. Wolf, A., Swift, J., Swinney, H. and Vastano, J. (1985). Determining Lyapunov Exponents from a Time Series. Physica D. Nonlinear phenomena, Vol. 16, 285-317 https://doi.org/10.1016/0167-2789(85)90011-9