References
- 김영일 (1993). D-와 이분산 G-최적을 중심으로 한 오차-로버스트적 실험계획법, 응용통계연구, 제6권 2호, 303-309
- 김영일, 강명욱 (2002). Multiple Constrained Optimal Experimental Design. 한국통계학회논문집, 제9권 3호, 619-627 https://doi.org/10.5351/CKSS.2002.9.3.619
- 염준근, 남기성 (2000). A Study on D-Optimal Design Using the Genetic Algorithm. 한국통계학회논문집, 제7권 1호, 357-370
- Atkinson, A.C. (1972). Planning experiments to detect inadequate regression models. Biometrika, Vol. 59, 275-293 https://doi.org/10.1093/biomet/59.2.275
-
Atkinson, A.C. and Bogacka, B. (1997). Compound D-and
$D_{s-} $ -optimum designs for determining the order of a chemical reaction. Technometrics, Vol. 39. 347-356 https://doi.org/10.2307/1271499 - Atwood, C.L. (1969). Optimal and Efficient Designs of Experiments. The Annals of Mathematical Statistics, Vol. 40, 1570-1602 https://doi.org/10.1214/aoms/1177697374
- Box, G.E.P. and Draper, N.R (1959). A basis for the selection of a response surface design. Journal of the American Statistical Association, Vol. 54, 622-653 https://doi.org/10.2307/2282542
- Box, G.E.P. and Draper, N.R. (1975). Robust Design. Biometrika, Vol. 62, 347-352 https://doi.org/10.1093/biomet/62.2.347
- Cook, R.D. and Wong, W.K. (1994). On the equivalence between constrained and compound optimal designs. Journal of the American Statistical Association, Vol. 89, 687-692 https://doi.org/10.2307/2290872
- Cook, R.D. and Fedorov, V.V. (1995). Constrained optimization of experimental design with discussion. Statistics, Vol. 26, 129-178 https://doi.org/10.1080/02331889508802474
-
Dette, H, and Franke, T. (2000). Constrained
$D_1$ - and D-optimal designs for polynomial regression. Ruhr- Universitat Bochum technical paper - Fedorov, V.V. (1972). Theory of Optimal Experiemnts. Academic Press, New York
- Huang, Y.C. (1996). Multiple-objective optimal designs. Doctor of Public Health Dissertation, Department of Biostatistics, School of Public Health, UCLA
- Huang, Y.C, and Wong, W.K. (1998a). Sequential construction of multiple -objective designs. Biometrics, Vol. 54, 188-197
- Huang, Y.C. and Wong, W.K. (1998b). Multiple-objective designs. Journal of Biopharmaceutical Statistie, Vol. 8, 635-643 https://doi.org/10.1080/10543409808835265
- Imhof, L. and Wong, W.K. (1999). A graphical method for finding maximin designs. Biometrics, Vol. 54, 188-197
- Lauter, E. (1974). Experimental planning in a class of models. Mathematishe Operationsforshung und Statistik, Vol. 5, 673-708
- Lauter, E. (1976). Optimal multipurpose designs for regression models. Mathmatische Operationsforsli und Statistics, Vol. 7, 51-68 https://doi.org/10.1080/02331887608801276
- Lee, C.M.S. (1987). Constrained optimal designs for regression models. Communications in Statistics, Part A-theory and Methods, Vol. 16, 765-783 https://doi.org/10.1080/03610928708829401
- Lee, C.M.S. (1998). Constrained optimal designs. Journal of Statistical Planning and Inierence, Vol. 18, 377-389
- Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York
- Silvey, S.D. (1980). Optimal Design. Chapman Hall, New York
- Stigler, S.M. (1971) Optimal experimental design for polynomial regression. Journal of the American Statistical Association, Vol. 66, 311-318 https://doi.org/10.2307/2283928
- Studden, W.J, (1982). Some robust-type D-optimal designs in polynomial regression. Journal of the American Statistical Association, Vol. 66, 311-318 https://doi.org/10.2307/2283928
- Wong, W.K. (1995). A graphical approach for constructing constrained D-and L - optimal designs using efficiency plots. Journal of Statistical Simulation and Computations, Vol. 53, 143-152 https://doi.org/10.1080/00949659508811702
- Wong, W.K. (1999). Recent advances in multiple-objective design strategies. Statistica Neerlandica, Vol. 53, 257-276 https://doi.org/10.1111/1467-9574.00111
- Zhu, W., Ahn, H. and Wong, W.K. (1998). Multiple-objective optimal designs for the logit model. Communications in Statistics-Theory and Methods, Vol. 27, 1581-1592 https://doi.org/10.1080/03610929808832178