Characterization of the Barrier Layers Comprised of Inorganic Compound for Organic Light Emitting Device Applications

  • Kim, Na-Rae (Optoelectronic Materials Research Center, Korea Institute of Science and Technology, Department of Electronics and Computer Engineering, Korea University) ;
  • Lee, Yang-Doo (Optoelectronic Materials Research Center, Korea Institute of Science and Technology, Division of Materials Science and Engineering, Korea University) ;
  • Kim, Jai-Kyeong (Optoelectronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Hwang, Sung-Woo (School of Electrical Engineering, Korea University) ;
  • Ju, Byeong-Kwon (School of Electrical Engineering, Korea University)
  • 발행 : 2006.09.24

초록

Currently, the flexible organic light emitting devices (OLEDs) are investigated. They are very vulnerable to moisture, and thus have been found to show some problems. Thus, an effective barrier layer is needed to protect from moisture in air. We deposited thin films with magnesium oxide (MgO) and silicon oxide $(SiO_{2})$ compounds mixed at various mixture ratios on flexible polyether sulfone (PES) substrates by an electron-beam evaporator to investigate their applizability for transparent barrier applications. In this study, we found that as the MgO fraction increased, thin films comprised of MgO and $(SiO_{2})$ compounds became more amorphous and their surface morphologies become smoother and denser. In addition, zirconium oxide $(ZrO_{2})$ was added to the above-mentioned compound mixtures. $ZrO_{2}$ made thin mixture films more amorphous and made the surface morphology denser and more uniform. The water vapor transmission rates (WVTRs) of the whole films decreased rapidly. The best WVTR was obtained by depositing thin films of Mg-Si-Zr-O compound among the whole thin films. As the thin mixture films became more amorphous, and the surface morphology become denser and more uniform, the WVTRs decreased. Therefore, the thin mixture films became more suitable for flexible OLED applications as transparent passivation layers against moisture in air.

키워드

참고문헌

  1. C. W. Tang. and S.A. VanSlyke. Appl. Phys. Lett. 51. 913 (1987) https://doi.org/10.1063/1.98799
  2. C. Adachi. T. Tetsuo. and S. Saito. Appl. Phys. Lett., 56, 799 (1990) https://doi.org/10.1063/1.103177
  3. C. W. Tang, Inf. Disp., 10, 16 (1996)
  4. J. Kido, M. Kimura, and K. Nagai. Science, 267. 1332 (1995) https://doi.org/10.1126/science.267.5202.1332
  5. T. Shimoda, M. Kimura, and S, Miyashila, in SID Symp. Dig. (1999), p. 372
  6. G. Rajeswaran, M. ltoh, M. Somson. S. Bany, T. K. Hatwar, K.B. Kahen. K. Yoneda, R. Yokoyama, T. Yamada, N. Komiya, H. Kanno. and H. Takahashi, in SID Symp. Dig. (2000), p. 974
  7. T. Sasaoka, M. Sekiya, A. Yumoto. J. Yamada, T. Hirano, Y. Iwasc, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura. and T. Urabe. in SID Symp. Dig. (2001), p. 384
  8. Y. Chang, M. K. Wei, C. M. Kuo, S. J. Shieh. J. H. Lee. and C. C. Chen. in SID Symp. Dig. (2001). p. 1040
  9. K. Yamashita. T. Mori, and T. J. Mizutani. J. Phys. D: Appl. Phys., 34. 740(2001) https://doi.org/10.1088/0022-3727/34/5/312
  10. P. E Burrows, V. Bulovic, S. R. Forrest. L. S. Sapochak. D.M. McCarty, and M. E. Thompson, Appl. Phys. Lett., 65, 2922 (1994) https://doi.org/10.1063/1.112532
  11. K. Akedo, A. Miura. H. Fujikawa. and Y. Taga., in SID Symp, Dig. (2003), p. 559
  12. A. Yoshida, S. Fujimura, T. Miyake. T. Yoshizawa, H. Ochi, A. Sugimoto, H. Kubota. T. Miyadera, S. Ishizuka, M. Tsuchida, and H. Nakada. in SID Symp. Dig. (2003). p. 856
  13. G. Gu, P. E. Burrows, S. Venkatesh. S. R. Forrest and M. E. Thompson, Opt. Lett., 22, 172 (1997) https://doi.org/10.1364/OL.22.000172
  14. Z. Wu, L. Wang. C. Chang, and Y. J. Qiu, J. Phys. D: Appl. Phys., 38, 981 (2005) https://doi.org/10.1088/0022-3727/38/7/003
  15. K. Yamashila, T. Mori, and T. J. Mizulani. J. Phys. D: Appl. Phys. 34. 740 (2001) https://doi.org/10.1088/0022-3727/34/5/312
  16. Vilex Syslems [Online]. Available: http://www.vilexsys.comlsolution.html
  17. G. Nisato. P. C. P Bouten. P. J. Slikkerveer. W. D. Benneu, G. L. Graff. N. Rutherford. and L. Wiese. IDW conf. (2001). p.1435
  18. D. S. Wuu. W. C. Lo. C. C. Chiang. H. B. Lin.. L. S. Chang.. R. H. Horng. C. L Huang. and Y. J. Gao, Surf. Coat. Technol. 197. 253 (2005) https://doi.org/10.1016/j.surfcoat.2004.09.033
  19. R. S. Kumar. M. Auch. E. Ou, G. Ewald. and C. S. Jin. Thin Solid Films. 417. 120 (2002) https://doi.org/10.1016/S0040-6090(02)00584-9
  20. Z. Zhang. I. J. Brin. M. A. and J. Tung. Appl. Poly. Sci. 82. 1866(2001) https://doi.org/10.1002/app.2030
  21. B.M. Henry. F. Dinelli. K.Y. Zhao. C. R. M. Grovenor, O. V. Kolosov, G. A. D. Brigg;. A. P. Roberts. R. S. Kumar. and R. P. Howsson. Thin Solid Films. 355-356. 500 (1999) https://doi.org/10.1016/S0040-6090(99)00461-7
  22. E. N. Farabaugh and D. M. Sanders. J. Vac. Sci. Technol. A. 1. 356 (1983) https://doi.org/10.1116/1.572134