A Study on the Nitrogen Permeation Treatment of 17-4 PH Stainless Steel

17-4 PH Stainless 강의 질소침투 열처리

  • Yoo, D.K. (Department of Materials Science and Engineering, Dong-A University) ;
  • Sung, J.H. (Department of Materials Science and Engineering, Dong-A University)
  • Received : 2006.02.13
  • Accepted : 2006.03.10
  • Published : 2006.03.30

Abstract

The surface phase changes, the hardness variations, the nitrogen contents and the corrosion resistances of 17-4 PH stainless steel have been investigated after nitrogen permeation(solution nitriding) at a temperature ranges from $1050^{\circ}C$ to $1150^{\circ}C$ The phases appeared at the nitrogen-permeated surface layer were shown to martensite plus austenite and austenite, depending on the variation of nitrogen and chromium contents. And the surface hardness was also depended on the phases appeared at the surface layer from 370 Hv to 220 Hv. The precipitates exhibited at the nitrogen-permeated surface layer were niobium nitride, niobium chromium nitride and carbo-nitride in the austenite and martensite matrices. The surface nitrogen contents were followed by the Cr contents of the surface layers, representing 0.55% at the temperatures of $1050^{\circ}C$ and $1150^{\circ}C$ respectively, and 0.96% at $1100^{\circ}C$ at the distances of $60{\mu}m$ from the outmost surface. From the comparison of the corrosion resistances between nitrogen-permeated and solution-annealed steels, nitrogen permeation remarkably improved the corrosion resistance in the solution of 1 N $H_2SO_4$ due to the increase of nitrogen content in the surface austenite phase.

Keywords

References

  1. H. Berns : ISIJ International, 36 (1996) 909 https://doi.org/10.2355/isijinternational.36.909
  2. H. Berns and S. Siebert : ISIJ International, 36 (1996) 927 https://doi.org/10.2355/isijinternational.36.927
  3. W. F. Smith : Structure and Properties of Engineering Alloy, 2nd Edition, McGraw-Hill, 1993, pp. 328
  4. H. Berns: Materials Australia, 33 (2001) 21
  5. K. C. Antony: J. Metals 15 (1963) 922
  6. L. W. Tsay, W. C. Lee, R. K. Shiue, J. W. Wu Corros. SCI. 44 (2002) 2101 https://doi.org/10.1016/S0010-938X(02)00023-9
  7. S. Isogawa, H. Yoshida, H. Hosoi and Y. Tozawa : J. Mater. Process. Technol. 74 (1998) 298 https://doi.org/10.1016/S0924-0136(97)00286-0
  8. U. K. Viswanathan, P. K. K. Nayar, R. Krishnan : Mater. SCI, Technol. 5 (1989) 346 https://doi.org/10.1179/026708389790222546
  9. H. J. Rack and D. Kalish: Metall. Trans. 5 (1974) 1595 https://doi.org/10.1007/BF02646331
  10. Y. Sawaragi, H. Teranishi, H. Makiura, M. Miura and M. Kubota: Sumitomo Metals, 37 (1985) 166
  11. R. Ayer, C. E Klein and C. N. Marzinsky : Metall Trans A 23 (1992) 2455 https://doi.org/10.1007/BF02658049
  12. D. H. Jack and K. H. Jack: JISI 210 (1972) 237
  13. D. K. Yoo, H. J. Lee, C. Y. Kang, K. H. Kim and J. H. Sung : Proceedings of the 3rd Asian Conf. on Heat Treatment of Materials, Noy. 10-12, Gyeongju, Korea, 2005, pp. 291
  14. H. J. Grabke : ISIJ International, 36 (1996) 777 https://doi.org/10.2355/isijinternational.36.777