DOI QR코드

DOI QR Code

Study on material properties of $Cu-TiB_2$ nanocomposite

$Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구

  • 김지순 (울산대학교 기계자동차공학부) ;
  • 장명규 (울산대학교 첨단소재공학부) ;
  • 염영진 (울산대학교 기계자동차공학부)
  • Published : 2006.04.01

Abstract

[ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.

고온자전합성법과 스파크 플라즈마 소결법으로 여러 가지 $TiB_2$ 함유량을 갖는 $Cu-TiB_2$ 금속복합재료를 제조하였다. 점용접 전극과 미끄럼 접촉재로 사용하기 위해 인장특성, 경도, 마모저항 등의 물성치를 조사하였다. 강화재의 형상, 크기, 부피분율 등에 의해 복합재료의 특성이 달라지므로 유효물성치를 예측하기 위한 모델링이 필수적이다. 유한요소해석결과 유효탄성 계수가 실험치와 일치하는 것을 확인하였고 Eshelby 모델, Mori-Tanaka의 평균장 이론이 결합된 Eshelby 모델, 혼합법칙 등으로 복합재료의 탄성계수를 예측한 결과 Mori-Tanaka의 평균장 이론이 결합된 Eshelby 모델이 실험치를 사장 잘 묘사하는 것으로 나타났다.

Keywords

References

  1. 이종상 외 'Spray Forming으로 제조된 $Cu-TiB_{2}$ 합금의 미세조직과 상온 항복강도에 관한 연구,' 대한금속학회지, Vol. 36, No.7, 1998, pp. 588-596
  2. Hashin Z. and Shtrikman, 'A variational approach to the theory of the elastic behaviour of multiphase materials,' J. Mech. Phys. Solids, Vol.11, 1963, pp. 127-140 https://doi.org/10.1016/0022-5096(63)90060-7
  3. Aboudi J. 'A Unified Micromechanical Approach Mechanics of Composite Materials,' pp. 14-18
  4. Mori T. and Tanaka K, 'A verage Stress in the matrix and Average Elastic Energy of Materials with Misfitting Inclusions,' Acta Metallurgica, Vol. 21, 1973, pp. 571-574 https://doi.org/10.1016/0001-6160(73)90064-3
  5. Eshelby J.D., 'The determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,' Proc. of the Royal Society of London, Vol. A241, 1957, pp. 376-396
  6. Tandon G.P. and Weng GJ., 'Average Stress in the Matrix and Effective Moduli of Randomly Oriented Composites,' Composites Science and Technology, Vol.27, 1986, pp. 111-132 https://doi.org/10.1016/0266-3538(86)90067-9
  7. 이재곤, 염영진, 최성배, '기공을 갖는 형상기억합금의 응력 및 변형률 관계에 대한 이론적 고찰,' 한국복합재료학회지, Vol. 17, No.6, 2004, pp. 8-13
  8. 이재곤, 김진곤, '강화재의 크기 및 배치에 따른 복합재의 등가 물성치 예측에 대한 연구,' 한국복합재료학회지, Vol. 18, No.5, 2005, pp. 21-26
  9. Farrell K. et aI., 'Small Specimen Procedures for Determination of Deformation Maps,' ASTMSTP 1418, 2002, pp. 283-293
  10. Tu J.P., Rong W., Guo S.Y. and Yang Y.Z., 'Dry sliding wear behavior of in situ Cu- TiB2 nanocomposites against medium carbon steel,' Wear, Vol. 255, 2003, pp. 832-835 https://doi.org/10.1016/S0043-1648(03)00115-7
  11. Tu J.P., Meng L. and Liu M.S., 'Friction and wear of Cu-FeJAI powder metallurgical composites In dry sliding,' Wear, Vol. 220, 1998, pp. 72-79 https://doi.org/10.1016/S0043-1648(98)00243-9
  12. Saka N. and Karalekas D.P., 'Friction and wear of particle-reinforced metal ceramic composites,' Proceedings of the International Conference on Wear of Materials, Canada, 1985, pp. 784-793
  13. Alpas AT. and Embury J.D., 'Sliding and abrasive wear behavior of an aluminum(2014)-SiC particle reinforced composites,' Script Metall. Mater., Vol. 24, 1990, pp. 931-935 https://doi.org/10.1016/0956-716X(90)90140-C
  14. MARC MENTAT, User's manual, MSC, 1997