Nonlinear Prediction using Gamma Multilayered Neural Network

Gamma 다층 신경망을 이용한 비선형 적응예측

  • 김종인 (금오공과대학교 전자공학부) ;
  • 고일환 (삼성전자 무선개발팀) ;
  • 최한고 (금오공과대학교 전자공학부)
  • Published : 2006.04.01

Abstract

Dynamic neural networks have been applied to diverse fields requiring temporal signal processing such as system identification and signal prediction. This paper proposes the gamma neural network(GAM), which uses gamma memory kernel in the hidden layer of feedforward multilayered network, to improve dynamics of networks and then describes nonlinear adaptive prediction using the proposed network as an adaptive filter. The proposed network is evaluated in nonlinear signal prediction and compared with feedforword(FNN) and recurrent neural networks(RNN) for the relative comparison of prediction performance. Simulation results show that the GAM network performs better with respect to the convergence speed and prediction accuracy, indicating that it can be a more effective prediction model than conventional multilayered networks in nonlinear prediction for nonstationary signals.

동적 신경망은 시스템 식별과 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에서 적용되어 왔다. 본 논문에서는 신경망의 동특성을 향상시키기 위해 순방향 다층 신경망의 히든 층에 감마(Gamma) 메모리 커넬을 사용하는 감마 신경망(GAM)을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측성능의 상대적인 비교를 위해 순방향 신경망(FNN)과 리커런트 신경망(RNN)과 비교하였다. 시뮬레이션 결과에 의하면 GAM 신경망은 수렴속도와 예측의 정확도에서 이러한 신경망보다 더 우수한 동작을 수행함으로써, 제안된 신경망이 기존의 다층 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

Keywords