참고문헌
- Boshoff, C., T.F. Schulz, M.M. Kennedy, A.K. Graham, C. Fisher, A. Thomas, J.O. McGee, R.A. Weiss, and J.J. O'Leary. 1995. Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat. Med. 1, 1274-1278 https://doi.org/10.1038/nm1295-1274
- Cesarman, E., Y. Chang, P.S. Moore, J.W. Said, and D.M. Knowles. 1995. Kaposi's sarcoma-associated herpesviruslike DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332, 1186-1191 https://doi.org/10.1056/NEJM199505043321802
- Chang, H., D.P. Dittmer, Y.C. Shin, Y. Hong, and J.U. Jung. 2005. Role of Notch signal transduction in Kaposi's sarcoma-associated herpesvirus gene expression. J. Virol. 79, 14371-14382 https://doi.org/10.1128/JVI.79.22.14371-14382.2005
- Chang, H., Y. Gwack, D. Kingston, J. Souvlis, X. Liang, R.E. Means, E. Cesarman, L. Hutt-Fletcher and, J.U. Jung. 2005. Activation of CD21 and CD23 gene expression by Kaposi's sarcoma-associated herpesvirus RTA. J. Virol. 79, 4651-4663 https://doi.org/10.1128/JVI.79.8.4651-4663.2005
- Chang, Y., E. Cesarman, M.S. Pessin, F. Lee, J. Culpepper, D. M. Knowles, and P.S. Moore. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865-1869 https://doi.org/10.1126/science.7997879
- Coscoy, L., and D. Ganem. 2000. Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl. Acad. Sci. USA 97, 8051-8056
- Coscoy, L., D.J. Sanchez, and D. Ganem. 2001. A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J. Cell Biol. 155, 1265-1273 https://doi.org/10.1083/jcb.200111010
- Curry, C.L., L.L. Reed, T.E. Golde, L. Miele, B.J. Nickoloff, and K.E. Foreman. 2005. Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi's sarcoma tumor cells. Oncogene 24, 6333-6344 https://doi.org/10.1038/sj.onc.1208783
- Gradoville, L., J. Gerlach, E. Grogan, D. Shedd, S. Nikiforow, C. Metroka, and G. Miller. 2000. Kaposi's sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J. Virol. 74, 6207-6212 https://doi.org/10.1128/JVI.74.13.6207-6212.2000
- Hamaguchi, Y., Y. Yamamoto, H. Iwanari, S. Maruyama, T. Furukawa, N. Matsunami, and T. Honjo. 1992. Biochemical and immunological characterization of the DNA binding protein (RBP-J kappa) to mouse J kappa recombination signal sequence. J. Biochem. (Tokyo) 112, 314-320 https://doi.org/10.1093/oxfordjournals.jbchem.a123898
- Hayward, G.S. 2003. Initiation of angiogenic Kaposi's sarcoma lesions. Cancer Cell 3, 1-3 https://doi.org/10.1016/S1535-6108(03)00002-3
- Hsieh, J.J., and S.D. Hayward. 1995. Masking of the CBF1/ RBPJ kappa transcriptional repression domain by Epstein- Barr virus EBNA2. Science 268, 560-563 https://doi.org/10.1126/science.7725102
- Ishido, S., C. Wang, B.S. Lee, G.B. Cohen, and J.U. Jung. 2000. Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol. 74, 5300-5309 https://doi.org/10.1128/JVI.74.11.5300-5309.2000
- Kawaichi, M., C. Oka, S. Shibayama, A.E. Koromilas, N. Matsunami, Y. Hamaguchi, and T. Honjo. 1992. Genomic organization of mouse J kappa recombination signal binding protein (RBP-J kappa) gene. J. Biol. Chem. 267, 4016-4022
- Liang, Y., J. Chang, S.J. Lynch, D.M. Lukac, and D. Ganem. 2002. The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev. 16, 1977-1989 https://doi.org/10.1101/gad.996502
- Liang, Y., and D. Ganem. 2003. Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc. Natl. Acad. Sci. USA 100, 8490-8495
- Liang, Y., and D. Ganem. 2004. RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi's sarcoma-associated herpesvirus by the lytic switch protein RTA. J. Virol. 78, 6818-6826 https://doi.org/10.1128/JVI.78.13.6818-6826.2004
- Ling, P.D., and S.D. Hayward. 1995. Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJk. J. Virol. 69, 1944-1950
- Lukac, D.M., R. Renne, J.R. Kirshner, and D. Ganem. 1998. Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252, 304-312 https://doi.org/10.1006/viro.1998.9486
- Means, R.E., S. Ishido, X. Alvarez, and J.U. Jung. 2002. Multiple endocytic trafficking pathways of MHC class I molecules induced by a Herpesvirus protein. EMBO J. 21, 1638-1649 https://doi.org/10.1093/emboj/21.7.1638
- Nakamura, H., M. Lu, Y. Gwack, J. Souvlis, S.L. Zeichner, and J.U. Jung. 2003. Global changes in Kaposi's sarcomaassociated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J. Virol. 77, 4205-4220 https://doi.org/10.1128/JVI.77.7.4205-4220.2003
- Neipel, F., J.C. Albrecht, and B. Fleckenstein. 1997. Cellhomologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J. Virol. 71, 4187-4192
- Nicholas, J., V. Ruvolo, J. Zong, D. Ciufo, H.G. Guo, M. S. Reitz, and G.S. Hayward. 1997. A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins. J. Virol. 71, 1963-1974
- Papin, J., W. Vahrson, R. Hines-Boykin, and D.P. Dittmer. 2005. Real-time quantitative PCR analysis of viral transcription. Methods Mol. Biol. 292, 449-480
- Radtke, F., and K. Raj. 2003. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer 3, 756-767 https://doi.org/10.1038/nrc1186
- Russo, J.J., R.A. Bohenzky, M.C. Chien, J. Chen, M. Yan, J.P. Maddalena Parry, D. Peruzzi, I.S. Edelman, Y. Chang, and P.S. Moore. 1996. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl. Acad. Sci. USA 93, 14862-14867
- Sanchez, D.J., L. Coscoy, and D. Ganem. 2002. Functional organization of MIR2, a novel viral regulator of selective endocytosis. J. Biol. Chem. 277, 6124-6130 https://doi.org/10.1074/jbc.M110265200
- Song, M.J., X. Li, H.J. Brown, and R. Sun. 2002. Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol. 76, 5000-5013 https://doi.org/10.1128/JVI.76.10.5000-5013.2002
- Staudt, M.R., Y. Kanan, J.H. Jeong, J.F. Papin, R. Hines-Boykinand, and D.P. Dittmer. 2004. The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res. 64, 4790-4799 https://doi.org/10.1158/0008-5472.CAN-03-3835
- Sun, R., S.F. Lin, L. Gradoville, Y. Yuan, F. Zhu, and G. Miller. 1998. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc. Natl. Acad. Sci. USA 95, 10866-10871
- Sun, R., S.F. Lin, K. Staskus, L. Gradoville, E. Grogan, A. Haase, and G. Miller. 1999. Kinetics of Kaposi's sarcomaassociated herpesvirus gene expression. J. Virol. 73, 2232- 2242
- Tomescu, C., W.K. Law, and D.H. Kedes. 2003. Surface downregulation of major histocompatibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi's sarcoma-associated herpesvirus. J. Virol. 77, 9669-9684 https://doi.org/10.1128/JVI.77.17.9669-9684.2003
- Ye, F.C., F.C. Zhou, S.M. Yoo, J.P. Xie, P.J. Browning, and S.J. Gao. 2004. Disruption of Kaposi's sarcoma-associated herpesvirus latent nuclear antigen leads to abortive episome persistence. J. Virol. 78, 11121-11129 https://doi.org/10.1128/JVI.78.20.11121-11129.2004
- Zhou, F.C., Y.J. Zhang, J.H. Deng, X.P. Wang, H.Y. Pan, E. Hettler, and S.J. Gao. 2002. Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J. Virol. 76, 6185-6196 https://doi.org/10.1128/JVI.76.12.6185-6196.2002