References
- Antelmann, H., S. Engelmann, R. Schmid, and M. Hecker. 1996. General and oxidative stress response in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J. Bacteriol. 178, 6571- 6578 https://doi.org/10.1128/jb.178.22.6571-6578.1996
- Bae, J.B., J.H. Park, M.Y. Hahn, M.S. Kim, and J.H. Roe. 2004. Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond formation. J. Mol. Biol. 335, 425-435 https://doi.org/10.1016/j.jmb.2003.10.065
- Bol, D.K. and R.E. Yasbin. 1990. Characterization of an inducible oxidative stress system in Bacillus subtilis. J. Bacteriol. 172, 3503-3506 https://doi.org/10.1128/jb.172.6.3503-3506.1990
- Braun, V. 1997. Surface signaling: novel transcription initiation mechanism starting from the cell surface. Arch. Microbiol. 167, 325-331 https://doi.org/10.1007/s002030050451
- Brown, K.L. and K.T. Hughes. 1995. The role of anti-sigma factors in gene regulation. Mol. Microbiol. 16, 397-404 https://doi.org/10.1111/j.1365-2958.1995.tb02405.x
- Bsat, N., L. Chen, and J.D. Helmann. 1996. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J. Bacteriol. 178, 6579-6586 https://doi.org/10.1128/jb.178.22.6579-6586.1996
- Cole, S.T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. Mclean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M.A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544 https://doi.org/10.1038/31159
- Chen, L. and J.D. Helmann. 1995. Bacillus subtilis MrgA is a Dps (PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol. Microbiol. 18, 295-300 https://doi.org/10.1111/j.1365-2958.1995.mmi_18020295.x
- Chen, L., L. Keramati, and J.D. Helmann. 1995. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc. Natl. Acad. Sci. USA 92, 8190-8194
- Dowds, B.C.A., P. Murphy, D.J. McConnell, and K.M. Devine. 1987. Relationship among oxidative stress, growth cycle, and sporulation in Bacillus subtilis. J. Bacteriol. 169, 5771-5775 https://doi.org/10.1128/jb.169.12.5771-5775.1987
- Dowds, B.C.A. 1994. The oxidative stress response in Bacillus subtilis. FEMS Microbiol. Lett. 124, 255-263 https://doi.org/10.1111/j.1574-6968.1994.tb07294.x
- Dubnau, D. and R. Davidoff-Abelson. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis, I. Formation and properties of the donor-recipient complex. J. Mol. Biol. 56, 209-221 https://doi.org/10.1016/0022-2836(71)90460-8
- Gorham, H.C., S.J. McGowan, P.R.H. Robson, and D.A. Hodgson. 1996. Light-induced carotenogenesis in Myxococcus xanthus: light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR. Mol. Microbiol. 19, 171-186 https://doi.org/10.1046/j.1365-2958.1996.360888.x
- Haldenwang, W.G. 1995. The sigma factor of Bacillus subtilis. Microbiol. Rev. 59, 1-30
- Harwood, C.R. and S.M. Cutting. 1990. Molecular Biological Methods for Bacillus
- Helmann, J.D. 1999. Anti-sigma factors. Curr. Opin. Microbiol. 2, 135-141 https://doi.org/10.1016/S1369-5274(99)80024-1
-
Horsburgh, M.J. and A. Moir. 1999.
$\sigma^M$ , an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentration of salt. Mol. Microbiol. 32, 41-50 https://doi.org/10.1046/j.1365-2958.1999.01323.x - Huang, X., A. Decatur, A. Sorokin, and J.D. Helmann. 1997. The Bacillus subtilis sigma(X) protein is an extracytoplasmic function sigma factor contributing to survival at high-temperature stress. J. Bacteriol. 179, 2915-2921 https://doi.org/10.1128/jb.179.9.2915-2921.1997
- Huang, X. and J.D. Helmann. 1998. Identification of target promoters for the Bacillus subtilis sigmaX factor using a consensus-directed search. J. Mol. Biol. 279, 165-173 https://doi.org/10.1006/jmbi.1998.1765
- Huang, X., K.L. Fredrick and J.D. Helmann. 1998. Promoter recognition by Bacillus subtilis sigmaW: autoregulation and partial overlap with the sigX regulon. J. Bacteriol. 180, 3765-3770
- Kang, J.G., M.S.B. Paget, Y.J. Seok, M.Y. Hahn, J.B. Bae, J.S. Hahn, C. Kleanthous, M.J. Buttner, and J.H. Roe. 1999. RsrA, an anti-sigma factor regulated by redox change. EMBO J. 18, 4292-4298 https://doi.org/10.1093/emboj/18.15.4292
- Karow, M.L. and P.J. Piggot. 1995. Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163, 69-74 https://doi.org/10.1016/0378-1119(95)00402-R
- Kenney, T.J. and C.P. Jr. Moran. 1987. Organization and regulation of an operon that encodes a sporulationessential sigma factor in Bacillus subtilis. J. Bacteriol. 169, 3329-3339 https://doi.org/10.1128/jb.169.7.3329-3339.1987
- Kunst, F., N. Ogasawara, I. Moszer, A.M. Albertini, G. Alloni, V. Azevedo, M.G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S.C. Brignell, S. Bron, S. Brouillet, C.V. Bruschi, B. Caldwell, V. Capuano, N.M. Carter, S.K. Choi, J.J. Codani, I.F. Connerton, A. Danchin, et al. 1997. The complete genome sequence of the Gram-positive Bacillus subtilis. Nature 390, 249-256 https://doi.org/10.1038/36786
- Liesegang, H., K. Lemke, R.A. Siddiqui, and H.G. Schlegel. 1993. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J. Bacteriol. 175, 767-778 https://doi.org/10.1128/jb.175.3.767-778.1993
- Li, W., A.R. Bottrill, M.J. Bibb, M.J. Buttner, and C. Kleanthous. 2003. The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA form Steptomyces coelicolor. J. Mol. Biol. 333, 461-472 https://doi.org/10.1016/j.jmb.2003.08.038
- Li, W., C.E. Stevenson, N. Burton, P. Jakimowicz, M.S.B. Paget, M.J. Buttner, D.M. Lawson, and C. Kleanthous. 2002. Identification and structure of the anti-sigma factor-binding domain of the disulphide-stress regulated sigma factor sigma(R) from Streptomyces coelicolor. J. Mol. Biol. 323, 225-236 https://doi.org/10.1016/S0022-2836(02)00948-8
- Lonetto, M.A., K.L. Brown, K.E. Rudd, and M.J. Buttner. 1994. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic function. Proc. Natl. Acad. Sci. USA 91, 7573-7577
- Matsumoto, T., K. Nakanishi, K. Asai, and Y. Sadaie. 2005. Transcriptional analysis of the ylaABCD operon of Bacillus subtilis encoding a sigma factor of extracytoplasmic function family. Genes Genet. Syst. 80, 385-393 https://doi.org/10.1266/ggs.80.385
- Milhaud, P. and G. Balassa. 1973. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistances to chemical and physical agents during sporulation of Bacillus subtilis. Mol. Gen. Genet. 125, 241-250 https://doi.org/10.1007/BF00270746
- Missiakas, D. and S. Raina. 1998. The extracytoplasmic function sigma factors: role and regulation. Mol. Microbiol. 28, 1059-1066 https://doi.org/10.1046/j.1365-2958.1998.00865.x
- Newman, J.D., J.R. Anthony, and T.J. Donohue. 2001. The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. J. Mol. Biol. 313, 485-499 https://doi.org/10.1006/jmbi.2001.5069
- Nunoshiba, T., F. Obata, A.C. Boss, S. Oikawa, T. Mori, S. Kawanishi, and K. Yamamoto. 1999. Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli. J. Biol. Chem. 274, 34832-34837 https://doi.org/10.1074/jbc.274.49.34832
- Paget, M.S.B., J.B. Bae, M.Y. Hahn, W. Li, C. Kleanthous, J.H. Roe, and M.J. Buttner. 2001. Mutational analysis of RsrA, zinc-binding anti-sigma factor with a thioldisulphide redox switch. Mol. Microbiol. 39, 1036-1047 https://doi.org/10.1046/j.1365-2958.2001.02298.x
-
Paget, M.S.B., J.G. Kang, J.H. Roe, and M.J. Butter. 1998.
$\sigma^R$ , an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J. 17, 5776-5 https://doi.org/10.1093/emboj/17.19.5776 -
Paget, M.S.B., V. Molle, G. Cohen, Y. Aharonowitz, and M.J. Buttner. 2001. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the
$\sigma^R$ regulon. Mol. Microbiol. 42, 1007-1020 https://doi.org/10.1046/j.1365-2958.2001.02675.x - Reinhold Bruckner. 1992. A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene 122, 187-192 https://doi.org/10.1016/0378-1119(92)90048-T
- Phillips, Z.E.V. and M.A. Strauch. 2002. Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol. Life Sci. 59, 392-402 https://doi.org/10.1007/s00018-002-8431-9
- Scharf C., S. Riethdorf, H. Ernst, S. Engelmann, U. Volker, and M. Hecker. 1998. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol. 180, 1869-1877
-
Shin, I., H.B. Ryu, H.S. Yim, and S.O. Kang. 2005. Cytochrome
$c_{550}$ is related to initiation of sporulation in Bacillus subtilis. J. Microbiol. 43, 244-250 - Stragier, P. and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30, 297-341 https://doi.org/10.1146/annurev.genet.30.1.297
- Van Dessel, W., L. Van Mellaert, N. Geukens, E. Lammertyn, and J. Anne. 2004. Isolation of high quality RNA from Streptomyces. J. Microbiol. Methods 58, 135-137 https://doi.org/10.1016/j.mimet.2004.03.015
- Yoshimura, M., K. Asai, Y. Sadaie, and H. Yoshikawa. 2004. Interaction of Bacillus subtilis extracytoplasmic function(ECF) sigma factors with the N-terminal regions of their potential anti-sigma factors. Microbiology 150, 591-599 https://doi.org/10.1099/mic.0.26712-0