Purification and Characterization of a Catalase from Photosynthetic Bacterium Rhodospirillum rubrum S1 Grown under Anaerobic Conditions

  • Kang Yoon-Suk (Department of Life Science, College of Natural Science, Cheju National University) ;
  • Lee Dong-Heon (Department of Life Science, College of Natural Science, Cheju National University) ;
  • Yoon Byoung-Jun (Department of Life Science, College of Natural Science, Cheju National University) ;
  • Oh Duck-Chul (Department of Life Science, College of Natural Science, Cheju National University)
  • Published : 2006.04.01

Abstract

The photosynthetic bacterium, Rhodospirillum rubrum S1, when grown under anaerobic conditions, generated three different types of catalases. In this study, we purified and characterized the highest molecular weight catalase from the three catalases. The total specific catalase activity of the crude cell extracts was 88 U/mg. After the completion of the final purification step, the specific activity of the purified catalase was 1,256 U/mg. The purified catalase evidenced an estimated molecular mass of 318 kDa, consisting of four identical subunits, each of 79 kDa. The purified enzyme exhibited an apparent Km value of 30.4 mM and a Vmax of 2,564 U against hydrogen peroxide. The enzyme also exhibited a broad optimal pH $(5.0{\sim}9.0)$, and remained stable over a broad temperature range $(20^{\circ}C{\sim}60^{\circ}C)$. It maintained 90% activity against organic solvents (ethanol/chloroform) known hydroperoxidase inhibitors, and exhibited no detectable peroxidase activity. The catalase activity of the purified enzyme was reduced to 19 % of full activity as the result of the administration of 10 mM 3-amino-1,2,4-triazole, a heme-containing catalase inhibitor. Sodium cyanide, sodium azide, and hydroxylamine, all of which are known heme protein inhibitors, inhibited catalase activity by 50 % at concentrations of $11.5{\mu}M,\;0.52{\mu}M,\;and\;0.11{\mu}M$, respectively. In accordance with these findings, the enzyme was identified as a type of monofunctional catalase.

Keywords

References

  1. Almiron, M., Link, A. J., Furlong, and D. R. Kolter. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Gene. Dev. 6, 2646- 2654 https://doi.org/10.1101/gad.6.12b.2646
  2. Beers, Jr. R. F. and I. W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133-140
  3. Bose, S. K., H. Gest., and J. G. Ormerod. 1962. Lightactivated hydrogenase activity in photosynthetic bacterium : A permeability phenomenon. J. Biol. Chem. 236, 13-14
  4. Finegold, S. M. and W. L. George. 1989. Anaerobic infections in humans. Academic Press. San Diego. Calif
  5. Gutteridge, J. M. and B. Holliwell. 2000. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. N. Y. Acad. Sci. 899, 136-147
  6. Hicks, D. B. 1995. Purification of three catalase isoenzymes from facultatively alkaliphilic Bacillus firmus OF4. Biochem. Biophys. Acta. 1229, 347-355 https://doi.org/10.1016/0005-2728(95)00016-C
  7. Hochman, A. and I. Goldberg. 1991. Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim. Biophys. Acta 1077, 299-307 https://doi.org/10.1016/0167-4838(91)90544-A
  8. Hochman, A. and A. Shemesh. 1987. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J. Biol. Chem. 262, 6871-6876
  9. Laemmli, U.K. 1970. Cleavage of structural proteins during the asembly of the head of bacterophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  10. Lee, I. J. and Y. N. Lee. 1995. Purification and characterization of Catalase-3 of Deinococcus radiophilus. J. Microbiol. 33, 239-243
  11. Levine, R. L., L. Mosoni, B. S. Berlett, and E. R. Stadtman. 1996. Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. USA 93, 15036-15040
  12. Lim, H. K., Y. M. Kim, D. H. Lee, H. Y. Kahng, and D. C. Oh. 2001. Analysis of Catalases from photosynthetic bacterium Rhodospirillum rubrum S1. J. Microbiol. 39, 168-176
  13. Loewen, P. C. 1992. Regulation of bacterial catalase synthesis. p.97-115. In J.G. Scandalios (ed.). Molecular biology of free radical scavenging systems. Cold Spring Harbor Laboratory Press. Cold Spring Harbor. N.Y
  14. Loewen, P. C., M. G. Klotz, and D. J. Hassett. 2000. Catalasean 'Old' enzyme that continues to surprise us. 66, 76-82
  15. Michan, S., F. Lledias, J. D. Baldwin, D. O. Natvig, and W. Hansberg. 2002. Regulation and oxidation of two large monofunctional catalases. Free Radic. Biol. Med. 33, 521-532 https://doi.org/10.1016/S0891-5849(02)00909-7
  16. Miller, C. D., Y. C. Kim, and A. J. Anderson. 1997. Cloning and mutational analysis of the gene for the stationary phase inducible catalase (cat c) from Pseudomonas putida. J. Bacteriol. 179, 5241-5245 https://doi.org/10.1128/jb.179.16.5241-5245.1997
  17. Morris, J. G. 1980. Oxygen tolerance/intolerance of anaerobic bacteria. p.7-15. In G. Gottschalk. N. Penning, and H. Werner (ed.). Anaerobes and anaerobic infections. Proceedings of Symposia held at the XII International Congress of Microbiology in Munich. Gustav Fisher Verlag. Stuttgart. Germany
  18. Nadler, V., I. Goldberg, and A. Hochman. 1986. Comparative study of bacterial catalase. Biochim. Biophys. Acta 82, 234- 241
  19. Rocha, E. R. and C. J. Smith. 1995. Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. J. Bacteriol. 177, 3111-3119 https://doi.org/10.1128/jb.177.11.3111-3119.1995
  20. Rocha, E. R. and C. J. Smith. 1997. Regulation of Bacteroides fragilis KatB mRNA by oxidative stress and carbon limitation. J. Bacteriol. 179, 7033-7039 https://doi.org/10.1128/jb.179.22.7033-7039.1997
  21. Shonbaum, G. R. and B. Chance, 1976. Catalase. In 'The Enxzyme (2nd ed)' Boyer, P. D. Eds, Vol. XIII
  22. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, E. K. Gartner, N. M. Goeke, B. J. Olson, and D. C. Klenk, 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85 https://doi.org/10.1016/0003-2697(85)90442-7
  23. Switala, J. and P. C. Loewen. 2002. Diversity of properties among catalases. Arch. Biochem. Biophys. 401, 145-154 https://doi.org/10.1016/S0003-9861(02)00049-8
  24. Terzebach, D. P. and M. Blaut. 1998. Purification and characterization of a catalase from the nonsulfur phototrophic bacterium Rhodobacter sphaeroides ATH 2.4.1 and its role in the oxidative stress response. Arch. Microbiol. 169, 503-508 https://doi.org/10.1007/s002030050603
  25. Ueda, M., H. Kinoshita, T. Yoshida, N. Kamashwa, M. Osumi, and A. Tanaka. 2003. Effect of catalase-specific inhibitor 3-amino-1,2,4-triazole on yeast peroxisomal catalase in vivo. FEMS Microbiol. Lett. 219. 93-98 https://doi.org/10.1016/S0378-1097(02)01201-6
  26. Uffen, R. L. and R. S. Wolfe. 1970. Anaerobic growth of purple nonsulfur bacteria under dark conditions. J. Bacteriol. 104, 462-472
  27. Wayne, L. G. and G. A. Diaz. 1986. A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamid gels. Anal. Biochem. 157, 89-92 https://doi.org/10.1016/0003-2697(86)90200-9
  28. Yumoto, I., Y. Fukumori, and T. Yamanaka. 1990. Purification and characterization of catalase from a facultative alkalophilic bacillus. J. Biochem. 108, 583-587 https://doi.org/10.1093/oxfordjournals.jbchem.a123246