Isolation and Characterization of Psychrotrophic and Halotolerant Rhodococcus sp. YHLT-2

  • Ryu Hee-Wook (Department of Environmental and Chemical Engineering, Soongsil University) ;
  • Joo Yang-Hee (Department of Environmental Science and Engineering, Ewha Woman's University) ;
  • An Youn-Joo (Department of Environmental Science, Konkuk University) ;
  • Cho Kyung-Suk (Department of Environmental Science and Engineering, Ewha Woman's University)
  • Published : 2006.04.01

Abstract

A psychrotrophic bacterium was isolated from oil-contaminated groundwater and identified as Rhodococcus sp. YHLT-2. Growth was observed at the temperature of 4 to $30^{\circ}C$. This strain degraded various petroleum hydrocarbons such as crude oil, diesel oil, and gasoline over the whole range of temperatures tested. The Rhodococcus sp. YHLT-2 was capable of growing even at $4^{\circ}C$, exhibiting 90% of oil biodegradation after 20 days. Degradation of crude oil occurred at low temperature in nature. This strain was also able to grow at 7% NaCl, and utilized not only short chain alkenes $(C_9\;to\;C_{12})$, but also a broad range of long chain alkenes $(C_{19}\;to\;C_{32})$ present in crude oil at $4^{\circ}C$. The Rhodococcus sp. YHLT-2 is expected to be of potential use in the in situ bioremediation of hazardous hydrocarbons under low-temperature and high-salt conditions.

Keywords

References

  1. Atlas, R. M. 1981. Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev. 45: 180-209
  2. Baek, K. H., H. S. Kim, S. H. Moon, I. S. Lee, H. M. Oh, and B. D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905
  3. Banat, I. M. 1995. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Bioresource Technol. 51: 1-12 https://doi.org/10.1016/0960-8524(94)00101-6
  4. Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ. Int. 26: 413-416 https://doi.org/10.1016/S0160-4120(01)00021-6
  5. Bredholt, H., P. Bruheim, M. Potocky, and K. Eimhjellen. 2002. Hydrocarbon development, alkane oxidation, and crude-oil emulsification in a Rhodococcus species. Can. J. Microbiol. 48: 295-304 https://doi.org/10.1139/w02-024
  6. Bundy, J. G., G. I. Paton, and C. D. Campbell. 2004. Combined microbial community level and single species biosensor responses to monitor recovery of oil-polluted soil. Soil Biol. Biochem. 36: 1149-1159 https://doi.org/10.1016/j.soilbio.2004.02.025
  7. Cho, W., E. H. Lee, E. H. Shim, J. Kim, H. W. Ryu, and K. S. Cho. 2005. Bacterial communities of biofilms sampled from seepage groundwater contaminated with petroleum oil. J. Microbiol. Biotechnol. 15: 952-964
  8. Choi, M. S., K. S. Cho, D. S. Kim, and H. W. Ryu. 2005. Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans. World J. Microbiol. Biotechnol. 21: 377-380 https://doi.org/10.1007/s11274-004-3627-9
  9. Evans, F. F., A. S. Rosado, G. V. Sebastian, R. Casella, P. L. O. A. Machado, C. Holmstrom, S. Kjelleberg, J. D. van Elsas, and L. Seldin. 2004. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49: 295-305 https://doi.org/10.1016/j.femsec.2004.04.007
  10. Goldstein, R. M., L. Mallory, and M. Alexander. 1985. Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ. Microbiol. 50: 977-983
  11. Gurtner, C. S., G. Pinar, W. Lubitz, and S. Rollerke. 2001. An advanced molecular strategy to identify bacterial communities on art objects. J. Microbiol. Methods 45: 77-87 https://doi.org/10.1016/S0167-7012(01)00227-5
  12. Hess, A., P. Hohener, D. Hunkeler, and J. Zeyer. 1996. Bioremediation of a diesel fuel contaminated aquifer: Simulation studies in laboratory aquifer columns. J. Contam. Hydrol. 23: 329-345 https://doi.org/10.1016/0169-7722(95)00107-7
  13. Kim, J. D., S. H. Shim, and C. G. Lee. 2005. Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Korea. J. Microbiol. Biotechnol. 15: 337- 345
  14. Kulichevskaya, I. S., V. S. Guzev, and N. S. Panikov. 1995. Population dynamics of hydrocarbon-oxidizing yeasts introduced into oil-contaminated soil. Microbiology 64: 569-573
  15. Lai, B. and S. Khanna. 1996. Degradation of crude oil by Acinetobacter calcoaceticus and Alchaligenes odorans. J. Appl. Bacteriol. 81: 355-362
  16. Leahy, J. G. and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305-315
  17. Margesin, R. and F. Schinner. 1997. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. Biotechnol. 47: 462-468 https://doi.org/10.1007/s002530050957
  18. Margesin, R. and F. Schinner. 1997. Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol. Ecol. 24: 234-249
  19. Margesin, R. and F. Schinner. 1997. Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Appl. Environ. Microbiol. 63: 2660-2664
  20. Mikael, E. and W. M. William. 2001. Effect of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in artic tundra soil. Appl. Environ. Microbiol. 67: 5107- 5112 https://doi.org/10.1128/AEM.67.11.5107-5112.2001
  21. Muyzer, G., A. Texke, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electophoresis of 16S-rDNA fragments. Arch. Microbiol. 164: 165-172 https://doi.org/10.1007/BF02529967
  22. Nwachukwu, S. U. 2002. Bioremediation of sterile agricultural soils polluted with crude petroleum by application of the soil bacterium, Pseudomonas putida, with inorganic nutrient supplementations. Cur. Microbiol. 42: 231-236
  23. Oh, Y. S., D. S. Sim, and S. J. Kim. 2003. Effectiveness of bioremediation on oil-contaminated sand in intertidal zone. J. Microbiol. Biotechnol. 13: 437-443
  24. Parra, J. L., J. Guinea, M. A. Manresa, M. Robert, M. E. Mercade, F. Comelles, and M. P. Bosch. 1989. Chemical characterization and physico-chemical behavior of biosurfactants. J. Am. Oil Chem. Soc. 66: 141-145 https://doi.org/10.1007/BF02661805
  25. Syutsubo, K., H. Kishira, and S. Harayama. 2001. Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanovorax strains. Environ. Microbiol. 3: 371-379 https://doi.org/10.1046/j.1462-2920.2001.00204.x
  26. Thomas, J. M. and C. H. Ward. 1989. In situ biorestoration of organic contaminants in the subsurface. Environ. Sci. Technol. 23: 760-766 https://doi.org/10.1021/es00065a004
  27. van Hamme, J. D. and O. P. Ward. 2001. Physical and metabolic interactions of Pseudomanas sp. strain JA5-B45 and Rhodococcus sp. strain F9-C79 during growth on crude oil and effect of a chemical surfactant on them. Appl. Environ. Microbiol. 67: 4874-4879 https://doi.org/10.1128/AEM.67.10.4874-4879.2001
  28. Whyte, L. G., I. Hawari, E. Zhou, L. Bourbonniere, W. E. Inniss, and C. W. Greer. 1998. Biodegradation of variablechain- length alkanes at low temperature by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 64: 2578- 2584
  29. Whyte, L. G., L. Bourconniere, and C. W. Greer. 1997. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and haphthalene (nah) catabolic pathways. Appl. Environ. Microbiol. 63: 3719-3723
  30. Woo, S. H. and J. M. Park. 2004. Biodegradation of aromatic compounds from soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
  31. Wunsche, L., L. Bruggemann, and W. Babel. 1995. Determination of substrate utilization patterns of soil microbial communities: An approach to assess population changes after hydrocarbon pollution. FEMS Microbiol. Ecol. 17: 295-305 https://doi.org/10.1111/j.1574-6941.1995.tb00154.x
  32. Zvyagintseva, I. S., M. N. Poglazova, M. T. Gotoeva, and S. S. Belyaev. 2001. Effect of the medium salinity on oil degradation by Norcardiform bacteria. Microbiology 70: 652-656 https://doi.org/10.1023/A:1013179513922