Comparison of Expression Profiles of HOX Gene Family in Human Embryonic Stem Cells and Selected Human Fetal Tissues

  • Hwang Jung-Hye (Department of Obstetrics and Gynecology, School of Medicine, Hanyang University) ;
  • Kim Kye-Seong (Department of Anatomy and Cell Biology, School of Medicine, Hanyang University) ;
  • Kim Byung-Ju (Department of Pathology, Asan Medical Center, School of Medicine, Ulsan University) ;
  • Kwon Hee-Sun (Department of Obstetrics and Gynecology, School of Medicine, Hanyang University) ;
  • Lee Man-Ryoul (Department of Anatomy and Cell Biology, School of Medicine, Hanyang University) ;
  • Park Moon-Il (Department of Obstetrics and Gynecology, School of Medicine, Hanyang University) ;
  • Jang Se-Jin (Department of Pathology, Asan Medical Center, School of Medicine, Ulsan University)
  • Published : 2006.04.01

Abstract

The HOX genes coding homeodomain proteins have been suggested as a candidate molecular switch that determines the fates of cells during embryonic development and patterning. It is believed that a set of differentiation-specific HOX genes enter into a turn-on state during tissue differentiation, in contrast to stem cell-specific HOX genes that enter into a turn-off state. However, comprehensive data of expression profiles of HOX genes in human embryonic stem cells (hESC) and differentiated embryonic tissues are not available. In this study, we investigated the expression patterns of all 39 HOX genes in hESC and human fetal tissues and analyzed the relationships between hESC and each tissue. Of the 39 genes, 18 HOX genes were expressed in stem cells, and diverse expression patterning was observed in human fetal tissues when compared with stem cells. These results indicate that HOX genes could be main targets for switching of stem cell differentiation into tissues.

Keywords

References

  1. Biggin, M. D. and W. McGinnis. 1997. Regulation of segmentation and segmental identity by Drosophila homeoproteins: The role of DNA binding in functional activity and specificity. Development 124: 4425-4433
  2. Cantile, M., G. Pettinato, A. Procino, I. Feliciello, L. Cindolo, and C. Cillo. 2003. In vivo expression of the whole HOX gene network in human breast cancer. Eur. J. Cancer 39: 257-264 https://doi.org/10.1016/S0959-8049(02)00599-3
  3. Celetti, A., P. Barba, C. Cillo, B. Rotoli, E. Boncinelli, and M. C. Magli. 1993. Characteristic patterns of HOX gene expression in different types of human leukemia. Int. J. Cancer 53: 237-244 https://doi.org/10.1002/ijc.2910530211
  4. Cillo, C., P. Barba, G. Freschi, G. Bucciarelli, M. C. Magli, and E. Boncinelli. 1992. HOX gene expression in normal and neoplastic human kidney. Int. J. Cancer 51: 892-897 https://doi.org/10.1002/ijc.2910510610
  5. Davies, J. A. and A. W. Brandli. 2002. The kidney development database. http://golgi.ana,ed.uk/kidnome.html
  6. De Robertis, E. M., G. Oliver, and C. V. Wright. 1989. Determination of axial polarity in the vertebrate embryo: Homeodomain proteins and homeogenetic induction. Cell 57: 189-191 https://doi.org/10.1016/0092-8674(89)90954-9
  7. Desplan, C., J. Theis, and P. H. O'Farrell. 1988. The sequence specificity of homeodomain-DNA interaction. Cell 54: 1081-1090 https://doi.org/10.1016/0092-8674(88)90123-7
  8. Duboule, D. 1995. Vertebrate Hox genes and proliferation: An alternative pathway to homeosis? Curr. Opin. Genet. Dev. 5: 525-528 https://doi.org/10.1016/0959-437X(95)90058-O
  9. Fuchs, E. and J. A. Segre. 2000. Stem cells: A new lease on life. Cell 100: 143-155 https://doi.org/10.1016/S0092-8674(00)81691-8
  10. Hoey, T. and M. Levine. 1988. Divergent homeo box proteins recognize similar DNA sequences in Drosophila. Nature 332: 858-861 https://doi.org/10.1038/332858a0
  11. Jones, J. M. and J. A. Thomson. 2000. Human embryonic stem cell technology. Semin. Reprod. Med. 18: 219-223 https://doi.org/10.1055/s-2000-12560
  12. Krumlauf, R. 1994. Hox genes in vertebrate development. Cell 78: 191-201 https://doi.org/10.1016/0092-8674(94)90290-9
  13. Li, X. and W. McGinnis. 1999. Activity regulation of Hox proteins, a mechanism for altering functional specificity in development and evolution. Proc. Natl. Acad. Sci. USA 96: 6802-6807
  14. Maconochie, M., S. Nonchev, A. Morrison, and R. Krumlauf. 1996. Paralogous Hox genes: Function and regulation. Annu. Rev. Genet. 30: 529-556 https://doi.org/10.1146/annurev.genet.30.1.529
  15. Nichols, J., B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe- Nebenius, I. Chambers, H. Scholer, and A. Smith. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95: 379-391 https://doi.org/10.1016/S0092-8674(00)81769-9
  16. Shamblott, M. J., J. Axelman, J. W. Littlefield, P. D. Blumenthal, G. R. Huggins, Y. Cui, L. Cheng, and J. D. Gearhart. 2001. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc. Natl. Acad. Sci. USA 98: 113-118
  17. Weiss, M. J. and S. H. Orkin. 1995. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc. Natl. Acad. Sci. USA 92: 9623-9627
  18. Xie, D. X., B. F. Feys, S. James, M. Nieto-Rostro, and J. G. Turner. 1998. COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091-1094 https://doi.org/10.1126/science.280.5366.1091