Gene Structure of Cotesia plutellae Bracovirus (CpBV)-$I_{k}B$ and Its Expression Pattern in the Parasitized Diamondback Moth, Plutella xylostella

프루텔고치벌 브라코바이러스(Cotesia plutellae Bracovirus) 유래 $I_{k}B$ 유전자 구조와 피기생 배추좀나방(Plutella xylostella) 체내 발현 패턴

  • Kim Yong-Gyun (School of Bioresource Sciences, Andong National University) ;
  • Basio Neil A. (Bulacan Agricultural State College, Pinaod, San Ildefonso) ;
  • Ibrahim Ahmed M.A. (School of Bioresource Sciences, Andong National University) ;
  • Bae Sung-Woo (School of Bioresource Sciences, Andong National University)
  • 김용균 (안동대학교 자연과학대학 생명자원과학부 곤충분자생리실험실) ;
  • ;
  • ;
  • 배성우 (안동대학교 자연과학대학 생명자원과학부 곤충분자생리실험실)
  • Published : 2006.04.01

Abstract

Inhibitor kB (IkB)-like gene has been found in the genome of Cotesia plutellae bracovirus (CpBV), which is the obligatory symbiont of an endoparsitoid wasp, C. plutellae. The open reading frame of CpBV-IkB was 417 bp and encoded 138 amino acids. Four ankyrin repeat domains were found in CpBV-IkB, which shared high homology with other known polydnavirus IkBs. Considering a presumptive cellular IkB based on Drosophila Cactus, CpBV-IkB exhibited a truncated structure with deletion of signal-receiving domains, which suggested its irreversible inhibitory role in NFkB signal transduction pathway of the parasitized host in response to the wasp parasitization. CpBV-IkB was expressed only in the parasitized diamondback moth, Plutella flostella. Its expression was estimated by quantitative RT-PCR during parasitization period, showing a constitutive expression pattern from the first day of parasitization. An indirect functional analysis of CpBV-IkB was conducted and suggested a hypothesis of host antivirus inhibition.

프루텔고치벌(Cotesia plutellae)은 내부기생봉이고 kB억제자 (IkB)와 유사한 유전자가 이 기생봉의 절대 공생바이러스(C. plutellae bracovirus: CpBV) 게놈에서 발견되었다. 이 유전자의 발현 부위는 417 br의 크기이며 138개 아미노산 서열 정보를 포함하였다. 이 단백질은 4개의 ankyrin 반복영역을 지니고 있었으며, 알려진 다른 폴리드나바이러스 유래 IkB 유전자와 높은 상동성을 보였다. 초파리 Cactus 단백질을 통해 대상 기주 IkB와 비교하여 보면, IkB 신호수신영역이 부재하는 구조를 보여, CpBV-IkB는 NFkB 신호전달체계의 비가역적 억제 인자로 작용할 것으로 추정되었다. CpBV-IkB는 프루텔고치 벌에 기생된 배추좀나방에서만 발현되었다. 정량적 RT-PCR 방법으로 CpBV-IkB의 발현량을 조사하여 보면, 기생 첫날부터 발현을 보이기 시작하여 뚜렷한 발현량을 기생 전체 기간동안 유지하는 양상을 보였다. 이 CpBV-IkB의 기능 분석이 간접적으로 이뤄졌으며, 이 유전자 발현물이 대상 기주 항바이러스 억제 인자로 작용할 것이라는 가설을 제시하였다.

Keywords

References

  1. Andrade, M.A., C. Perez-Iratxeta and C.P. Pomting. 2001. Protein repeats: structure, functions, and evolution. J. Struct. Biol. 134: 117-131 https://doi.org/10.1006/jsbi.2001.4392
  2. Arenzana-Seisdedos, F., P. Turpin, M. Rodriguez, D. Thomas, R.T. Hay, J.L. Virelizier and C. Dargemont. 1997. Nuclear location of I$\kappa$B$\alpha$ promotes active transport of NF$\kappa$B from the nucleus to the cytoplasm. J. Cell Sci. 110: 369-378
  3. Bae, S. and Y. Kim. 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. 138A: 39-44
  4. Baeuerle, P.A. and D. Baltimore. 1988. I$\kappa$B: a specific inhibitor of the NF$\kappa$B transcripttion factor. Science 242: 540-546 https://doi.org/10.1126/science.3140380
  5. Basio, N.A. and Y. Kim. 2005. A short review of teratocytes and their characters in Cotesia plutellae (Braconidae: Hymonoptera). J. Asia-Pacific Entomol. 8: 211-217 https://doi.org/10.1016/S1226-8615(08)60093-X
  6. Beckage, N.E., F.F. Tan, K.W. Schleifer, R.D. Lane and L.L. Cherubin. 1994. Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco homworm, Manduca sexta. Arch. Insect Biochem. Physiol. 26: 165 - 195 https://doi.org/10.1002/arch.940260209
  7. Beg, A.A. and A.S. Baldwin, Jr. 1993. The I$\kappa$B proteins: multifunctional regulators of ReI/NF-$\kappa$B transcription factors. Genes Dev. 7: 2064-2070 https://doi.org/10.1101/gad.7.11.2064
  8. Belle, E., N.E. Beckage, J. Rousselet, M. Poirie, F. Lemeunier and J.-M. Drezen. 2002. Visualization of polydnavirus sequences in a parasitoid wasp chromosome. 76: 5793 - 5796 https://doi.org/10.1128/JVI.76.11.5793-5796.2002
  9. Bennett, V. 1992. Ankyrins. J. Biol. Chem. 267: 8703 -8706
  10. Burke, J.R., M.K. Wood, R.-P. Ryseck, S. Walther and C.A. Meyers. 1999. Peptides corresponding to the Nand C termini of I$\kappa$B-${\alpha},\;-{\beta}$, and -$\epsilon$ as probes of the two catalytic subunits of I$\kappa$B kinase, IKK-1 and IKK-2. J. Biol. Chem. 274: 36146-36152 https://doi.org/10.1074/jbc.274.51.36146
  11. Choi, J.Y., J.Y. Rho, J.N. Kang, H.J. Shim, S.D. Woo, B.R. Jin, M.S. Li and Y.H. Je. 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332: 487 - 493 https://doi.org/10.1016/j.bbrc.2005.04.146
  12. Clem, R.J. 2005. The role of apoptosis in defense against baculovirus infection in insects. Curr. Top. Microbiol. Immunol. 289: 113-130 https://doi.org/10.1007/3-540-27320-4_5
  13. De Gregorio, E., P.T. Spellman, G.M. Rubin and B. Lemaitre. 2001. Genome-wide analysis of the Drosophila immune response by using oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 98: 12590- 12595
  14. Dushay, M.S., B. Asling and D. Hultmark. 1996. Origins of immunity: Relish, a compound Rei-like genes in the antibacterial defense of Drosophila. Proc Natl. Acad. Sci. USA 93: 10343 -10347
  15. Engstrom, Y., L. Kadalayil, S.C. Sun, C. Samakovlis, D. Hultmark and I. Faye. 1993. k$\beta$-Iike motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232: 327 -333 https://doi.org/10.1006/jmbi.1993.1392
  16. Espagne, E., C. Dupuy, E. Huguet, L. Cattolico, B. Provost, N. Martins, M. Poirie, G. Periquet and J.M. Drezen. 2004. Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 286-289
  17. Han, Z.S. and T. Ip. 1999. Interaction and specificity of Rel-related proteins in regulating Drosophila immunity gene expression. J. Biol. Chem. 274: 21355-21361 https://doi.org/10.1074/jbc.274.30.21355
  18. Hatada, E.N., A. Nieters, F.G. Wulczyn, M. Naumann, R. Meyer, G. Nucifora, T.W. McKeithan and C. Scheidereit. 1992. The ankyrin repeat domains of the NF-$\kappa$B precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-$\kappa$B DNA binding. Proc Natl. Acad. Sci. USA 89: 2489-2493
  19. Hoffmann, J.A. 2003. The immune response of Drosophila. Nature 426: 33 -38 https://doi.org/10.1038/nature02021
  20. Huxford, T., D.-B. Huang, S. Malek and G. Ghosh. 1998. The crystal structure of the I$\kappa$B$\alpha$/NF-$\kappa$B complex reveals mechanisms of NF-$\kappa$B inactivation. Cell 95: 759-770 https://doi.org/10.1016/S0092-8674(00)81699-2
  21. Imler, J.L. and P. Bulet. 2005. Antimicrobial peptide in Drosophila: structures, activities, and gene regulation. Chem Immunol. Allergy 86: 1 - 21
  22. Irving, P., J.-M. Ubeda, D. Doucet, L. Troxler, M. Lagueux, D. Zachary, J.A. Hoffmann, C. Hetru and M. Meister. 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7: 335 - 350
  23. Jacobs, M.D. and S.C. Harrison. 1998. Structure of an I$\kappa$B$\alpha$/NF-$\kappa$B complex. Cell 95: 749-758 https://doi.org/10.1016/S0092-8674(00)81698-0
  24. Kappler, C., M. Meister, M. Lagueux, E. Gateff, J.A. Hoffmann and J.M. Reichhart. 1993. Insect immunity. Two 17 bp repeats nesting a k$\beta$-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J. 12: 1561-1568
  25. Karin, M. 1999. The beginning of the end: I$\kappa$B kinase (IKK) and NF-$\kappa$B activation. J. Biol. Chem. 274: 27339-27342 https://doi.org/10.1074/jbc.274.39.27339
  26. Kim, Y. and J. Kim. 2004. Inhibitory effect of Cotesia plutellae bracovirus (CpBV) on development of a non-natural host, Spodoptera exigua. Korean J. Appl. Entomol. 43: 217 - 223
  27. Krell, P.J., M.D. Summers and S.B. Vinson. 1982. Virus with a multipartite superhelical DNA genome from the ichneumonid parasitoid Campoletis sonorensis. J. Virol. 43: 859 - 870
  28. Kroemer, J.A. and B.A. Webb. 2004. Polydnavirus and genome: emerging gene families and new insights into polydnavirus replication. Annu. Rev. Entomol. 49: 431-456 https://doi.org/10.1146/annurev.ento.49.072103.120132
  29. Kroemer, J.A. and B.A. Webb. 2005. I$\kappa$B-related vankyrin genes in the Campoletis sonorensis ichnovirus: temporal and tissuespecific patterns of expression in parasitized Heliothis virescens lepidopteran hosts. J. Virol. 79: 7617-7628 https://doi.org/10.1128/JVI.79.12.7617-7628.2005
  30. Latimer, M., M.K. Ernst, L.L. Dunn, M. Drutskaya and N.R. Rice. 1998. The N-terminal domain of I$\kappa$Ba masks the nuclear localization signal(s) of p50 and c-Rel homodimers. Mol. Cell. Biol. 18: 2640-2649 https://doi.org/10.1128/MCB.18.5.2640
  31. Lee, S. and Y. Kim. 2004. Juvenile hormone esterase of diamondback moth, Plutella xylostella, and parasitism of Cotesia plutellae. J. Asia-Pacific Entomol. 7: 283-287 https://doi.org/10.1016/S1226-8615(08)60228-9
  32. Lin, P.-H., L.H. Huange and R. Steward. 2000. Cactin, a conserved protein that interacts with the Drosophila I$\kappa$B protein cactus and modulates its function. Mech. Dev. 94: 57-65 https://doi.org/10.1016/S0925-4773(00)00314-2
  33. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delata C(T)) method. Methods 25: 402-408 https://doi.org/10.1006/meth.2001.1262
  34. Liu, Z.-P., R.L. Galindo and S.A. Wasserman. 1997. A role for CKII phosphorylation of the cactus PEST domain in dorsoventral patterning of the Drosophila embryo. Genes Dev. 11: 3413-3422 https://doi.org/10.1101/gad.11.24.3413
  35. Oh, M.R., S.S. Kim, J.D. Park, J.C. Paik and D.I. Kim. 1997. Biological characteristics of Cotesia plutellae (Hymenoptera: Braconidae), a larval parasitoid of Plutella xylostella (Lepidoptera: Yponomeutidae). Korean J. Entomol. 27: 79-84
  36. O'Reilly D.R., L.K. Miller and V.A. Luckow. 1992. Baculovirus expression vectors. A laboratory manual. 347 pp. W.H. Freeman and Company, NY
  37. Ray, P., D.-E. Zhang, J.A. Elias and A. Ray. 1995. Cloning of a differentially expressed I$\kappa$B-related protein. J. Biol. Chem. 270: 10680-10685 https://doi.org/10.1074/jbc.270.18.10680
  38. Revilla, Y., M. Callejo, J.M. Rodriguez, E. Culebras, M.L. Nogal, M.L. Salas, E. Vinuela and M. Fresno. 1998. Inhibition of nuclear factor KB activation by a virus-encoded I$\kappa$B-like protein. J. Biol. Chem. 273: 5405 - 5411 https://doi.org/10.1074/jbc.273.9.5405
  39. Sambrook, J., E.F. Fritsh and T. Maniatis. 1989. Molecular cloning. A laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, NY
  40. Sedgwick, S.G. and S.J. Smerdon. 1999. The ankyrimepeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci. 24; 311 - 316 https://doi.org/10.1016/S0968-0004(99)01426-7
  41. Senftleben, U., Y. Cao, G. Xiao, F.R. Greten, G. Krahn, G. Bonizzi, Y. Chen, Y. Hu, A. Fong, S.-C. Sun and M. Karin. 2001. Activation by IKKa of a second evolutionarily conserved, NF-$\kappa$B signaling pathway. Science 293: 1495-1499 https://doi.org/10.1126/science.1062677
  42. Shirane, M., S. Hatakeyama, K. Hattori, K. Nakayama and K-I. Nakayama. 1999. Common pathway for the ubiquitination of I${\kappa}B{\alpha}$, I${\kappa}B{\beta}$, and I${\kappa}B{\varepsilon}$ mediated by the F-box protein FWD1. J. Biol. Chem. 274: 28169-28174 https://doi.org/10.1074/jbc.274.40.28169
  43. Simeonidis, S., S. Liang, G. Chen and D. Thanos. 1997. Cloning and functional characterization of mouse I${\kappa}B{\varepsilon}$. Proc. Natl. Acad. Sci. USA 94: 14372-14377
  44. Sun, S.C. and I. Faye. 1992. Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA-binding properties similar to nuclear-factor, k${\beta}$. Eur. J. Biochem. 204: 885-892 https://doi.org/10.1111/j.1432-1033.1992.tb16708.x
  45. Talekar, N.S. and J.C. Yang. 1991. Characteristics of parasitism of diamondback moth by two laval parasites. Entomophaga 36: 95-104 https://doi.org/10.1007/BF02374640
  46. Thoetkiattikul, H., M.H. Beck and M.R. Strand. 2005. Inhibitor $\kappa$B-like proteins from a polydnavirus inhibit NF-$\kappa$B activation and suppress the insect immune response. Proc. Natl. Acad. Sci. USA 102: 11426-11431
  47. Uvell, H. and Y. Engstrom. 2003. Functional characterization of a novel promoter element required for an innate immune response in Drosophila. Mol. Cell. Biol. 23: 8272-8281 https://doi.org/10.1128/MCB.23.22.8272-8281.2003
  48. Webb, B.A. 1998. Polydnavirus biology, genome structure, and evolution. pp. 105-139. In The insect viruses, eds. by L.K. Miller and L.A. Ball. Plenum Publishing Corporation, New York
  49. Zabel, U. and P.A. Baeuerle. 1990. Purified human I$\kappa$B can rapidly dissociate the complex of the NF$\kappa$B transcription factor with its cognate DNA. Cell 61: 255-265 https://doi.org/10.1016/0092-8674(90)90806-P
  50. Zambon, R.A., M. Nandakumar, V.N. Vakharia and L.P. Wu. 2005. The Toll pathway is important for an antiviral response in Drosophila. Proc. Natl. Acad. Sci. USA 102: 7257-7262