Pencil Curve Computation for Clean-up Machining

잔삭 가공을 위한 펜슬커브 생성

  • 박태종 (아주대학교 산업정보시스템공학부) ;
  • 박상철 (아주대학교 산업정보시스템공학부)
  • Published : 2006.02.01

Abstract

This paper presents a procedure to compute pencil curves from a triangular mesh which is offset with the radius of a given ball-end mill. An offset triangular mesh has numerous self-intersections caused by an abundance of invalid triangles, which do not contribute to the valid CL-surface. Conceptually, we can obtain valid pencil curves by combining all intersections tying on the outer skin of the offset triangular mesh, i.e., the valid CL-surface. The underlying concept of the proposed algorithm is that visible intersections are always valid for pencil curves, because visible intersections lie on the outer skin of the offset model. To obtain the visibility of intersections efficiently, the proposed algorithm uses a graphics board, which performs hidden surface removal on up to a million polygons per second.

Keywords

References

  1. Choi, B. K. and Jerard, R. B. 'Sculptured Surface Machining - theory and Applications', Kluwer Academic Publishers, 1998
  2. Balasubramaniam, M., Laxmiprasad, P., Sarma, S. and Shaikh, Z., 'Generating 5-axis Paths Directly from a Tessellated Representation', Computer-Aided Design, Vol. 32, pp. 261-277, 2000 https://doi.org/10.1016/S0010-4485(99)00103-7
  3. Balasubramaniam, M., Sarma, S. and Marciniak, K., 'Collision-free Finishing Toolpaths from Visibility Data', Computer-Aided Design, Vol. 35, pp. 359- 374, 2003 https://doi.org/10.1016/S0010-4485(02)00057-X
  4. Ren, Y., Yau, H. T. and Lee, Y. S., 'Clean-up Tool Path Generation by Contraction Tool Method for Machining Complex Polyhedral Models', Comput. Ind., Vol. 54, pp. 17-33, 2004 https://doi.org/10.1016/j.compind.2003.09.003
  5. Zhu, W. and Lee, Y. S., 'Five-axis Pencil-cut Planning anD Virtual Prototyping with 5-DOF Haptic Interface', Computer-Aided Design, Vol. 36, pp. 1295-1307, 2004 https://doi.org/10.1016/j.cad.2004.01.013
  6. Park, S. C., 'Triartgular Mesh Intersection', Visual Computer, Vol. 20, No.7, pp. 448-456, 2004
  7. Park, S. C., 'Sculptured Surface Machining Using Triangular Mesh Slicing', Computer-Aided Design, Vol. 36, No.3, pp. 279-288, 2004 https://doi.org/10.1016/S0010-4485(03)00114-3
  8. Klass, R. and Kuhn, B., 'Fillet and Surface Intersections Defined by Rolling Balls', Computer Aided Geometric Design, Vol. 9, pp. 185-193, 1992 https://doi.org/10.1016/0167-8396(92)90016-I
  9. Lee, Y. S., Ma, Y. and Jegadesh, G, 'Rolling-ball Method and Contour Marching Approach to Identifying Critical Regions for Complex Surface Machining', Comput. Ind., Vol. 41, No.2, pp. 163-180, 2000 https://doi.org/10.1016/S0166-3615(99)00042-1
  10. Xiuzhi, Q. and Brent, S., 'A 3D Surface Offset Method for STL-format Models', Rapid Prototyping Journal, Vol. 9, pp. 133-141, 2003 https://doi.org/10.1108/13552540310477436
  11. Maekawa, T., 'An Overview of Offset Curves and Surfaces', Computer-Aided Design, Vol. 31, pp. 165-173, 1999 https://doi.org/10.1016/S0010-4485(99)00013-5
  12. Jun, C. S., Kim, D. S. and Park, S., 'A New Curvebased Approach to Polyhedral Machining', Computer-Aided Design, Vol. 34, No.5, pp. 379-389, 2002 https://doi.org/10.1016/S0010-4485(01)00110-5