Blood-Brain Barrier Interfaces and Brain Tumors

  • Lee Sae-Won (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Stroke and neurovascular regulation laboratory) ;
  • Kim Woo-Jean (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Neuroprotection research laboratory, Massachusetts General Hospital, Harvard Medical School) ;
  • Park Jeong-Ae (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Choi Yoon-Kyung (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kwon Yoo-Wook (Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases) ;
  • Kim Kyu-Won (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Published : 2006.04.01

Abstract

In the developing brain, capillaries are differentiated and matured into the blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocyte end-feet, and pericytes. Since the BBB regulates the homeostasis of central nervous system (CNS), the maintenance of the BBB is important for CNS function. The disruption of the BBB may result in many brain disorders including brain tumors. However, the molecular mechanism of BBB formation and maintenance is poorly understood. Here, we summarize recent advances in the role of oxygen tension and growth factors on BBB development and maintenance, and in BBB dysfunction related with brain tumors.

Keywords

References

  1. Abbott, N. J., Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat., 200, 629-638 (2002) https://doi.org/10.1046/j.1469-7580.2002.00064.x
  2. Abbott, N. J., Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat., 200, 629-638 (2002) https://doi.org/10.1046/j.1469-7580.2002.00064.x
  3. Antonetti, D. A., Barber, A. J., Hollinger, L. A., Wolpert, E. B., and Gardner, T. W., Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem., 274, 23463-23467 (1999) https://doi.org/10.1074/jbc.274.33.23463
  4. Bauer, H. C. and Bauer, H., Neural induction of the blood-brain barrier: still an enigma. Cell. Mol Neurobiology 20, 13-28 (2000) https://doi.org/10.1023/A:1006939825857
  5. Bazzoni, G., The JAM family of junctional adhesion molecules. Curr. Opin. Cell Biol., 15, 525-530 (2003) https://doi.org/10.1016/S0955-0674(03)00104-2
  6. Breier, G., Albrecht, U., Sterrer, S., and Risau, W., Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development, 114, 521-532 (1992)
  7. Breier, G., Breviario, F., Caveda, L., Berthier, R., Schnurch, H., Gotsch, U., Vestweber, D., Risau, W., and Dejana, E., Molecular cloning and expression of murine vascular endothelialcadherin in early stage development of cardiovascular system. Blood, 87, 630-641 (1996)
  8. Bunn, H. F. and Poyton, R. O., Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev., 76, 839-885 (1996) https://doi.org/10.1152/physrev.1996.76.3.839
  9. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., and Nagy, A., Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380, 435-439 (1996) https://doi.org/10.1038/380435a0
  10. Citi, S., Sabanay, H., Jakes, R., Geiger, B., and Kendrick-Jones, J., Cingulin, a new peripheral component of tight junctions. Nature, 333, 272-276 (1988) https://doi.org/10.1038/333272a0
  11. Collins, V. P., Cellular mechanisms targeted during astrocytoma progression., Cancer Lett., 188, 1-7 (2002) https://doi.org/10.1016/S0304-3835(02)00198-2
  12. Corada, M., Mariotti, M., Thurston, G., Smith, K., Kunkel, R., Brockhaus, M., Lampugnani, M. G., Martin-Padura, I., Stoppacciaro, A., Ruco, L., McDonald, D. M., and Ward, P. A., Dejana, E., Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc. Natl. Acad. Sci. U.S.A., 96, 9815-9820 (1999)
  13. Cordon-Cardo, C., O'Brien, J. P., Casals, D., Rittman-Grauer, L., Biedler, J. L., Melamed, M. R., and Bertino, J. R., Multidrugresistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Pro.c Natl. Acad. Sci. U.S.A., 86, 695-698 (1989)
  14. Dehouck, M. P., Vigne, P., Torpier, G., Breittmayer, J. P., Cecchelli, R., and Frelin, C., Endothelin-1 as a mediator of endothelial cell-pericyte interactions in bovine brain capillaries. J. Cereb. Blood Flow. Metab., 17, 464-469 (1997) https://doi.org/10.1097/00004647-199704000-00012
  15. Demeule, M., Regina, A., Jodoin, J., Laplante, A., Dagenais, C., Berthelet, F., Moghrabi, A., and Beliveau, R., Drug transport to the brain: Key roles for the efflux pump p-glycoprotein in the blood-brain barrier. Vas. Pharm., 38, 339-348 (2002) https://doi.org/10.1016/S1537-1891(02)00201-X
  16. Duelli, R. and Kuschinsky, W., Brain glucose transporters: relationship to local energy demand. News Physiol. Sci., 16, 71-76 (2001)
  17. Enge, M., Bjarnegard, M., Gerhardt, H., Gustafsson, E., Kalen, M., Asker, N., Hammes, H. P., Shani, M., Fassler, R., and Betsholtz, C., Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J., 21, 4307-4316 (2002) https://doi.org/10.1093/emboj/cdf418
  18. Engelhardt, B., Development of the blood-brain barrier. Cell Tissue Res., 314, 119-129 (2003) https://doi.org/10.1007/s00441-003-0751-z
  19. Fanning, A. S., Jameson, B. J., Jesaitis, L. A., and Anderson, J. M., The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem., 273, 29745-29753 (1998) https://doi.org/10.1074/jbc.273.45.29745
  20. Ferrara, N. and Henzel, W. J., Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun., 161, 851-858 (1989) https://doi.org/10.1016/0006-291X(89)92678-8
  21. Folkman, J., Fundamental concepts of the angiogenic process. Curr. Mol. Med., 3, 643-651 (2003) https://doi.org/10.2174/1566524033479465
  22. Fried, B. M. and Buckley, R. C., Primary carcinoma of the lungs. Arch. Pathol., 9, 483-527 (1930)
  23. Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., and Tsukita, S., Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol., 141, 1539-1550 (1998) https://doi.org/10.1083/jcb.141.7.1539
  24. Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., and Tsukita, S., Occludin: a novel integral membrane protein localizing at tight junctions., J. Cell Biol., 123, 1777-1788 (1993) https://doi.org/10.1083/jcb.123.6.1777
  25. Gaillard, P. J., Voorwinden, L. H., Nielsen, J. L., Ivanov, A., Atsumi, R., Engman, H., Ringbom, C., de Boer, A. G., and Breimer, D. D., Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eu.r J. Pharm. Sci., 12, 215-222 (2001) https://doi.org/10.1016/S0928-0987(00)00123-8
  26. Gelman, I. H., The role of SSeCKS/gravin/AKAP12 scaffolding proteins in the spaciotemporal control of signaling pathways in oncogenesis and development. Front. Biosci., 7, d1782- d1797 (2002) https://doi.org/10.2741/gelman
  27. Genbacev, O., Zhou, Y., Ludlow, J. W., and Fisher, S. J., Regulation of human placental development by oxygen tension. Science, 277, 1669-1672 (1997) https://doi.org/10.1126/science.277.5332.1669
  28. Gloor, S. M., Wachtel, M., Bolliger M. F., Ishihara, H., Landmann, R., and Frei, K., Molecular and cellular permeability control at the blood-brain barrier. Brain Res. Brain Res. Rev., 36, 258- 264 (2001) https://doi.org/10.1016/S0165-0173(01)00102-3
  29. Guerin, C., Laterra, J., Hruban, R. H., Brem, H., Drewes, L. R., and Goldstein, G. W., The glucose transporter and bloodbrain barrier of human brain tumors. Ann. Neurol., 28, 758- 765 (1990) https://doi.org/10.1002/ana.410280606
  30. Harik, S. I., Kalaria, R. N., Andersson, L., Lundahl, P., and Perry, G., Immunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions. J. Neurosci., 10, 3862-3872 (1990) https://doi.org/10.1523/JNEUROSCI.10-12-03862.1990
  31. Haskins, J., Gu, L., Wittchen, E. S., Hibbard, J., and Stevenson, B. R., ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin., J. Cell Biol., 141, 199-208 (1998) https://doi.org/10.1083/jcb.141.1.199
  32. Hirase, T., Staddon, J. M., Saitou, M., Ando-Akatsuka, Y., Itoh, M., Furuse, M., Fujimoto, K., Tsukita, S., and Rubin, L. L., Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci., 110, 1603-1613 (1997)
  33. Huber, J. D., Egleton, R. D., and Davis, T. P., Molecular physiology and pathophysiology of tight junctions in the bloodbrain barrier. Trends Neurosci., 24, 719-725 (2001) https://doi.org/10.1016/S0166-2236(00)02004-X
  34. Igarashi, Y., Utsumi, H., Chiba, H., Yamada-Sasamori, Y., Tobioka, H., Kamimura, Y., Furuuchi, K., Kokai, Y., Nakagawa, T., Mori, M., and Sawada, N., Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem. Biophys. Res. Commu., n 261, 108-112 (1999)
  35. Itoh, M., Furuse, M., Morita, K., Kubota, K., Saitou, M., and Tsukita, S., Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J. Cell Biol., 147, 1351-1363 (1999a) https://doi.org/10.1083/jcb.147.6.1351
  36. Itoh, M., Morita, K., and Tsukita, S. H., Characterization of ZO-2 as a MAGUK family member associated with tight and adherens junctions with a binding affinity to occludin and ${\ajpla}- catenin$. J. Biol. Chem., 274, 5981-5986 (1999b) https://doi.org/10.1074/jbc.274.9.5981
  37. Itoh, M., Sasaki, H., Furuse, M., Ozaki, H., Kita, T., and Tsukita, S., Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol., 154, 491-497 (2001) https://doi.org/10.1083/jcb.200103047
  38. Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., Gassmann, M., Gearhart, J. D., Lawler, A. M., Yu, A. Y., and Semenza, G. L., Cellular and developmental control of $O_2$ homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev., 12, 149-162 (1998) https://doi.org/10.1101/gad.12.2.149
  39. Janzer, R. C. and Raff, M. C., Astrocytes induce blood-brain barrier properties in endothelial cells. Nature, 325, 253-257 (1987) https://doi.org/10.1038/325253a0
  40. Kandel, E. R., Schwartz, J. H., and Jessell, T. M., Appendix B, Ventricular organization of cerebrospinal fluid: Blood-brain barrier, brain edema, and hydrocephalus, in: Principles of neural science (4th Eds). McGraw-Hill Companies, U.S.A., pp.1288-1301 (2000)
  41. Kaur, B., Khwaja, F. W., Severson, E. A., Mathenyh, S. L., Brat, D. J., and Van Meir, E. V., Hypoxia and the hypoxia-induciblefactor pathway in glioma growth and angiogenesis. Neurooncol., 7, 134-153 (2005)
  42. Kleihues P. and Cavanee W. K., (Eds.), Tumors of the Nervous System. World Health Organization Classification of Tumors. Pathology and Genetics. IARC Press, Vol 1., Lyon (2000)
  43. Lampugnani, M. G., Corada, M., Caveda, L., Breviario, F., Ayalon, O., Geiger, B., and Dejana, E., The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J. Cell Biol., 129, 203-217 (1995) https://doi.org/10.1083/jcb.129.1.203
  44. Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., Kim, and Y. J., Kim, K. W., SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med., 9, 900-906 (2003) https://doi.org/10.1038/nm889
  45. Lee, Y. M., Jeong, C. H., Koo, S. Y., Son, M. J., Song, H. S., Bae, S. K., Raleigh, J. A., Chung, H. Y., Yoo, M. A., and Kim, K. W., Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev. Dyn., 220, 175-186 (2001) https://doi.org/10.1002/1097-0177(20010201)220:2<175::AID-DVDY1101>3.0.CO;2-F
  46. Liebner, S., Fischmann, A., Rascher, G., Duffner, F., Grote, E. H., Kalbacher, H., and Wolburg, H., Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiform. Acta Neuropathol., 100, 323-331 (2000) https://doi.org/10.1007/s004010000180
  47. Lindahl, P., Johansson, B. R., Leveen, P., and Betsholtz, C., Pericyte loss and microaneurysm formation in PDGF-Bdificient mice. Science 277., 242-245 (1997) https://doi.org/10.1126/science.277.5323.242
  48. Maher, F., Vannucci, S. J., and Simpson, I. A., Glucose transporter proteins in brain. FASEB J., 8, 1003-1011 (1994) https://doi.org/10.1096/fasebj.8.13.7926364
  49. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N., and Yancopoulos, G. D., Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55-60 (1997) https://doi.org/10.1126/science.277.5322.55
  50. Maltepe, E. and Simon, M.C., Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J. Mo.l Med., 76, 391- 401 (1998) https://doi.org/10.1007/s001090050231
  51. Manley, G. T., Fujimura, M., Ma, T., Noshita, N., Filiz, F., Bollen, A. W., Chan, P., and Verkman, A. S., Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med., 6, 159-163 (2000) https://doi.org/10.1038/72256
  52. Martin-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D., and Dejana, E., Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J .Cell Biol., 142, 117- 127 (1998) https://doi.org/10.1083/jcb.142.1.117
  53. Matter, K. and Balda, M. S., Holey barrier: claudins and the regulation of brain endothelial permeability. J. Cell Biol., 161, 459-460 (2003) https://doi.org/10.1083/jcb.200304039
  54. McCarty, J. H., Monahan-Earley, R. A., Brown, L. F., Keller, M., Gerhardt, H., Rubin, K., Shani, M., Dvorak, H. F., Wolburg, H., Bader, B. L., Dvorak, A. M., and Hynes, R. O., Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol. Cell Biol., 22, 7667-7677 (2002) https://doi.org/10.1128/MCB.22.21.7667-7677.2002
  55. Mi, H., Haeberle, H., and Barres, B. A., Induction of astrocyte differentiation by endothelial cells. J. Neurosci., 21, 1538- 1547 (2001) https://doi.org/10.1523/JNEUROSCI.21-05-01538.2001
  56. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N. P., and Risau, W., A. Ullrich, High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 72, 835-846 (1993) https://doi.org/10.1016/0092-8674(93)90573-9
  57. Minagar, A., Long, A., Ma, T., Jackson, T. H., Kelley, R. E., Ostanin, D. V., Sasaki, M., Warren, A. C., Jawahar, A., Cappell, B., and Alexander, J. S., Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced disintegration of endothelial junction integrity and barrier. Endothelium, 10, 299-307 (2003) https://doi.org/10.1080/714007544
  58. Morita, K., Sasaki, H., Fujimoto, K., Furuse, M., and Tsukita, S., Claudin-11/OSP-based tight junctions of myelin sheaths in brain and sertoli cells in testis. J. Cell Biol., 145, 579-588 (1999) https://doi.org/10.1083/jcb.145.3.579
  59. Nag, S., The blood-brain barrier and cerebral angiogenesis: lessons from the cold-injury model. Trends Mol. Med., 8, 38- 44 (2002) https://doi.org/10.1016/S1471-4914(01)02221-3
  60. Nagamatsu, S., Kornhauser, J. M., Burant, C. F., Seino, S., Mayo, K. E., and Bell, G. I., Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization. J. Biol. Chem., 267, 467- 472 (1992)
  61. Nicchia, G. P., Frigeri, A., Liuzzi, G. M., and Svelto, M., Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J., 17, 1508-1510 (2003) https://doi.org/10.1096/fj.02-1183fje
  62. Nico, B., Quondamatteo, F., Herken, R., Marzullo, A., Corsi, P., Bertossi, M., Russo, G., Ribatti, D., and Roncali, L., Developmental expression of ZO-1 antigen in the mouse blood-brain barrier. Brain Res. Dev. Brain Res., 114, 161-169 (1999) https://doi.org/10.1016/S0165-3806(99)00008-5
  63. Nico, B., Quondamatteo, F., Herken, R., Marzullo, A., Corsi, P., Bertossi, M., Russo, G., Ribatti, D., and Roncali, L., Developmental expression of ZO-1 antigen in the mouse blood-brain barrier. Brain Res. Dev. Brain Res., 114, 161-169 (1999) https://doi.org/10.1016/S0165-3806(99)00008-5
  64. Nitta, T., Hata, M., Gotoh, S., Seo, Y., Sasaki, H., Hashimoto, N., Furuse, M., and Tsukita, S., Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol., 161, 653-660 (2003) https://doi.org/10.1083/jcb.200302070
  65. Palmer, T. D., Willhoite, A. R., and Gage, F. H., Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol., 425, 479-494 (2000) https://doi.org/10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3
  66. Papadopoulos, M. C., Saadoun, S., Woodrow, C. J., Davies, D. C., Costa-Martins, P., Moss, R. F., Krishna, S., and Bell, B. A., Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol. Appl. Neurobiol., 27, 384-395 (2001) https://doi.org/10.1046/j.0305-1846.2001.00341.x
  67. Pardridge, W. M., Boado, R. J., and Farrell, C. R., Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J. Biol. Chem., 265, 18035-18040 (1990)
  68. Petty M. A. and Wettstein, J. G., Elements of cerebral microvascular ischaemia. Brain Res. Brain Res. Rev., 36, 23- 34 (2001) https://doi.org/10.1016/S0165-0173(01)00062-5
  69. Plate, K. H., Breier, G., Weich, H. A., Mennel, H. D., and Risau, W., Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int. J. Cancer, 59, 520-529 (1994) https://doi.org/10.1002/ijc.2910590415
  70. Plate, K. H., Mechanism of angiogenesis in the brain. J. Neuropathol. Exp. Neurol., 58, 313-320 (1999) https://doi.org/10.1097/00005072-199904000-00001
  71. Ramsauer, M., Krause, D., and Dermietzel, R., Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J., 16, 1274-1276 (2002) https://doi.org/10.1096/fj.01-0814fje
  72. Rascher, G., Fischmann, A., Kroger, S., Duffner, F., Grote, E. H., and Wolburg, H., Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol. (Berl), 104, 85-91 (2002) https://doi.org/10.1007/s00401-002-0524-x
  73. Reuss, B., Dono, R., and Unsicker, K., Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants. J. Neurosci., 23, 6404-6412 (2003) https://doi.org/10.1523/JNEUROSCI.23-16-06404.2003
  74. Richards, L. J., Kilpatrick, T. J., Dutton, R., Tan, S. S., Gearing, D. P., Bartlett, P. F., and Murphy, M., Leukaemia inhibitory factor or related factors promote the differentiation of neuronal and astrocytic precursors within the developing murine spinal cord. Eur. J. Neurosci., 8, 291-299 (1996) https://doi.org/10.1111/j.1460-9568.1996.tb01213.x
  75. Rieckmann, P. and Engelhardt, B., Building up the blood-brain barrier. Nat. Med., 9, 828-829 (2003) https://doi.org/10.1038/nm0703-828
  76. Risau, W. and Wolburg, H., Development of the BBB. Trends Neurosci., 13, 174-178 (1990) https://doi.org/10.1016/0166-2236(90)90043-A
  77. Risau, W., Mechanisms of angiogenesis. Nature, 386, 671-674 (1997) https://doi.org/10.1038/386671a0
  78. Saadoun, S., Papadopoulos, M. C., Davies, D. C., Bell, B. A., and Krishna, S., Increased aquaporin 1 water channel expression in human brain tumours. Br. J. Cancer, 87, 621- 623 (2002) https://doi.org/10.1038/sj.bjc.6600512
  79. Saadoun, S., Papadopoulos, M. C., Davies, D. C., Krishna, S., and Bell, B. A., Aquaporin-4 expression is increased in oedematous human brain tumours. J. Neurol. Neurosurg. Psychiatry, 72, 262-265 (2002) https://doi.org/10.1136/jnnp.72.2.262
  80. Saitou, M., Furuse, M., Sasaki, H., Schulzke, J. D., Fromm, M., Takano, H., Noda, T., and Tsukita, S., Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell, 11, 4131-4142 (2000) https://doi.org/10.1091/mbc.11.12.4131
  81. Sandercoe, T. M., Geller, S. F., Hendrickson, A. E., Stone, J., and Provis, J. M., VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: evidence of developmental hypoxia. J. Comp. Neurol., 462, 42-54 (2003) https://doi.org/10.1002/cne.10705
  82. Savettieri, G., Di Liegro, I., Catania, C., Licata, L., Pitarresi, G.L., D'Agostino, S., Schiera, G., De Caro, V., Giandalia, G., Giannola, L. I., and Cestelli, A., Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreport 11, 1081-1084 (2000) https://doi.org/10.1097/00001756-200004070-00035
  83. Schiera, G., Bono, E., Raffa, M. P., Gallo, A., Pitarresi, G. L., Di Liegro, I., and Savettieri, G., Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J. Cell Mol. Med., 7, 165-170 (2003) https://doi.org/10.1111/j.1582-4934.2003.tb00215.x
  84. Schnadelbach, O., Blaschuk, O. W., Symonds, M., Gour, B. J., Doherty, P., and Fawcett, J. W., N-cadherin influences migration of oligodendrocytes on astrocyte monolayers. Mol. Cell Neurosci., 15, 288-302 (2000) https://doi.org/10.1006/mcne.1999.0819
  85. Small, R. K., Watkins, B. A., Munro, P. M., and Liu, D., Functional properties of retinal Muller cells following transplantation to the anterior eye chamber. Glia, 7, 158-169 (1993) https://doi.org/10.1002/glia.440070205
  86. Song, H. S., Son, M. J., Lee, Y. M., Kim, W. J., Lee, S. W., Kim, C. W., and Kim, K. W., Oxygen tension regulates the maturation of the blood-brain barrier. Biochem. Biophys. Res. Commun., 290, 325-331 (2002) https://doi.org/10.1006/bbrc.2001.6205
  87. Staddon, J. M. and Rubin, L. L., Cell adhesion, cell junctions and the blood-brain barrier. Curr. Opin. Neurobiol., 6, 622- 627 (1996) https://doi.org/10.1016/S0959-4388(96)80094-8
  88. Takano, S., Yoshii, Y., Kondo, S., Suzuki, H., Maruno, T., Shirai, S., and Nose, T., Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res., 56, 2185-2190 (1996)
  89. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., and Willingham, M. C., Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem., 37, 159-164 (1989) https://doi.org/10.1177/37.2.2463300
  90. Tran, N. D., Correale, J., Schreiber, S. S., and Fisher, M., Transforming growth factor-beta mediates astrocyte-specific regulation of brain endothelial anticoagulant factors. Stroke, 30, 1671-1678 (1999) https://doi.org/10.1161/01.STR.30.8.1671
  91. Utsumi, H., Chiba, H., Kamimura, Y., Osanai, M., Igarashi, Y., Tobioka, H., Mori, M., and Sawada, N., Expression of GFRalpha-1, receptor for GDNF, in rat brain capillary during postnatal development of the BBB. Am. J. Physiol. Cell Physiol., 279, C361-C368 (2000) https://doi.org/10.1152/ajpcell.2000.279.2.C361
  92. Valter, M. M., Hugel, A., Huang, H. J., Cavenee, W. K., Wiestler, O. D., Pietsch, T. , and Wernert, N., Expression of the Ets-1 transcription factor in human astrocytomas is associated with Fms-like tyrosine kinase-1 (Flt-1)/vascular endothelial growth factor receptor-1 synthesis and neoangiogenesis. Cancer Res., 59, 5608-5614 (1999)
  93. Verkman, A. S. and Mitra, A. K., Structure and function of aquaporin water channels. Am. J. Pathology, 78, F13-F28 (2001)
  94. Verkman, A. S., Aquaporin water channels and endothelial cell function. J. Anat., 200, 617-627 (2002) https://doi.org/10.1046/j.1469-7580.2002.00058.x
  95. Walker, P. S., Donovan, J. A., Van Ness, B. G., Fellows, R. E., and Pessin, J. E., Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells. J. Biol. Chem., 263, 15594-15601 (1988)
  96. Wang, W., Dentler, W. L., and Borchardt, R. T., VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am. J. Physiol. Heart Circ. Physiol., 280, H434-H440 (2001) https://doi.org/10.1152/ajpheart.2001.280.1.H434
  97. Wolburg, H. and Lippoldt, A., Tight junctions of the blood-brain barrier: Development, composition and regulation. Vas. Pharmacol., 38, 323-337 (2002) https://doi.org/10.1016/S1537-1891(02)00200-8
  98. Wolburg, H., Wolburg-Buchholz, K., Kraus, J., Rascher- Eggstein, G., Liebner, S., Hamm, S., Duffner, F., Grote, E. H., Risau, W., and Engelhardt, B., Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol., 105, 586-592 (2003)
  99. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., and Holash, J., Vascular-specific growth factors and blood vessel formation. Nature, 407, 242-248 (2000) https://doi.org/10.1038/35025215
  100. Zhang, M. and Olsson, Y., Hematogenous metastases of the human brain-characteristics of peritumoral brain changes. J. Neurooncol., 35, 81-89 (1997) https://doi.org/10.1023/A:1005799805335
  101. Zhang, Y., Porat, R. M., Alon, T., Keshet, E., and Stone, J., Tissue oxygen levels control astrocyte movement and differentiation in developing retina. Brain Res. Dev. Brain Res., 118, 135-145 (1999) https://doi.org/10.1016/S0165-3806(99)00140-6
  102. Zhong, Y., Saitoh, T., Minase, T., Sawada, N., Enomoto, K., and Mori, M., Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J. Cell Biol., 120, 477-483 (1993) https://doi.org/10.1083/jcb.120.2.477