초록
최근 시간에 따른 대량의 공간 객체들의 효과적인 저장과 처리의 필요성이 요구되면서 시공간 데이타베이스에 대한 필요성이 증가하였다. 이러한 시공간 데이타베이스에서 효과적인 질의 처리를 위하여 여러 가지 질의 최적화 기법이 연구되었고 그중 질의의 근사적인 결과를 계산하는 선택도 추정 기법이 활발하게 연구되었다. 선택도 추정 기법에는 샘플링 기반 기법, 히스토그램 기반 기법, 웨이블릿 기반 기법 등이 있고 그중 히스토그램 기법은 현재 상용 데이타베이스에서 널리 사용되고 있다. 하지만 지금까지의 시공간 질의 최적화 연구는 이동 객체의 미래 위치에 대한 선택도 추정에 치중되어 왔다. 본 논문에서는 과거의 시공간 데이타의 질의 최적화를 위하여 새로운 히스토그램인 T-Minskew의 구축 방법을 제안한다. 또한 T-Minskew를 이용한 효과적인 선택도 추정 기법을 제안하고 임계치 기법을 이용한 히스토그램의 효과적인 유지 기법을 통해 잦은 히스토그램 재구축을 방지하고 작은 추정 오류율을 유지하는 방법을 제안한다.
Recently there is a need to store and process enormous spatial data in spatio-temporal databases. For effective query processing in spatio-temporal databases, selectivity estimation in query optimization techniques, which approximate query results when the precise answer is not necessary or early feedback is helpful, has been studied. There have been selectivity estimation techniques such as sampling-based techniques, histogram-based techniques, and wavelet-based techniques. However, existing techniques in spatio-temporal databases focused on selectivity estimation for future extent of moving objects. In this paper, we construct a new histogram, named T-Minskew, for query optimization of past spatio-temporal data. We also propose an effective selectivity estimation method using T-Minskew histogram and effective histogram maintenance technique to prevent frequent histogram reconstruction using threshold.