계층적 신경망을 이용한 객체 영상 분류

Object Image Classification Using Hierarchical Neural Network

  • 김종호 (인제대학교 전산학과 대학원) ;
  • 김상균 (인제대학교 컴퓨터공학부) ;
  • 신범주 (부산대학교 바이오시스템학부)
  • 발행 : 2006.03.01

초록

본 논문에서는 내용기반 영상 분류를 위한 방법론으로써 신경망을 이용한 계층적 분류 방법을 제안한다. 분류 대상 영상은 인터넷상의 다양한 영상들 중에서 전경과 배경의 구분이 있는 객체 영상이다. 전처리 과정에서 영역 분할을 이용하여 영상 내에서 배경을 제거하고 객체 영역을 추출한다. 분류를 위한 특징으로는 웨이블릿 변환 후 추출된 형태 특징과 질감 특징을 이용한다. 추출된 특징 값들을 Principal Component Analysis(PCA)와 K-means를 이용해서 군집화 시키고 유사한 군집들을 묶으면서, 5단계의 계층적 분류기를 구성한다. 계층적 분류기는 BP를 학습 알고리즘으로 사용하는 59개의 신경망분류기로 구성된다. 배경을 제거하고 질감특징 중 가장 높은 분류율을 보이는 대각 모멘트를 사용하여 실험하였을 때, 100종류에서 각 10개씩, 총 1000개의 학습 데이터와 1000개의 테스트 데이터에 대하여 각각 81.5%와 75.1%의 정분류율을 보였다.

In this paper, we propose a hierarchical classifier of object images using neural networks for content-based image classification. The images for classification are object images that can be divided into foreground and background. In the preprocessing step, we extract the object region and shape-based texture features extracted from wavelet transformed images. We group the image classes into clusters which have similar texture features using Principal Component Analysis(PCA) and K-means. The hierarchical classifier has five layes which combine the clusters. The hierarchical classifier consists of 59 neural network classifiers learned with the back propagation algorithm. Among the various texture features, the diagonal moment was the most effective. A test with 1000 training data and 1000 test data composed of 10 images from each of 100 classes shows classification rates of 81.5% and 75.1% correct, respectively.

키워드