Study on InGaAs/InGaAsP/InP Quantum-dot Molecules for Quantum Interference devices

양자간섭소자를 위한 InGaAs/InGaAsP/InP 양자점 분자구조 연구

  • Kim Jin-Soak (Department of Physics and Quantum-Function Spinics Laboratory, Hanyang University) ;
  • Kim Eun-Kyu (Department of Physics and Quantum-Function Spinics Laboratory, Hanyang University) ;
  • Jeong Weon-G. (Department of Materials Engineering, Sungkyunkwan University)
  • Published : 2006.03.01

Abstract

In this study, we analyzed the electrical and optical properties of metalorganic chemical vapor deposition grown InGaAs/InGaAsP/InP quantum dot(QD) molecules by using photoluminescence and deep-level transient spectroscopy. From these resulte, the energy levels of the large QDs are located at deeper region from the conduction band edge of the barrier than that of the small QDs, The large QDs seem to have the energy states more than two, and these energy levels of the QD molecules are located at 0.35, 0.42, and 0.45 eV from conduction band edge under -4 V reverse bias conditions. The energy levels are closely coupled under low reverse bias, and then decoupled as the bias voltage is increased.

유기금속화학기상증착법으로 InGaAs/InGaAsP/InP 양자점 분자구조를 두 양자점 층간의 거리가 10 nm가 되도록 성장하여 성장된 구조에 대해 C-V, DLTS 및 PL 등의 전기 광학적 물성측정을 하였다. 그 결과 큰 양자점은 작은 양자점과 비교하여 장벽물질의 전도대역 가장자리로부터 먼 쪽에 에너지 준위가 형성되어 있음을 확인하였다. 큰 쪽 양자점에는 최소한 2개 이상의 에너지 준위에 운반자를 포획시킬 수 있음이 확인되었는데, -4 V의 역전압 하에서 측정된 양자점 분자구조의 에너지 준위는 장벽 가장자리로부터 0.35, 0.42, 0.45 eV 의 깊이에 각각 존재하였다. 인가된 전압의 변화에 대하여 약한 전기장 하에서는 양자점 분자구조의 에너지 준위들이 서로 결합되어 있다가 전기장이 증가하면서 이들 두 에너지 준위가 확연히 분리되는 모습을 확인할 수 있었다.

Keywords

References

  1. P.-F. Braun, X. Marie, L. Lombez, B. Urbaszek, T. Amand, P. Renucci, V. K. Kalevich, K. V. Kavokin, O. Krebs, P. Voisin, and Y. Masumoto, Phys. Rev. Lett. 94, 16601 (2005) https://doi.org/10.1103/PhysRevLett.94.016601
  2. M. Hayne, R. Provoost, M. K. Zundel, Y. Manz, K. Eberl, and V. V. Moshchalkov, Physica E 6, 436 (2000) https://doi.org/10.1016/S1386-9477(99)00213-1
  3. K. E. Meissner, C. Holton, and W. Spillman, Physica E 26, 377 (2005) https://doi.org/10.1016/j.physe.2004.08.008
  4. L. Jacak, P. Hawrylak, and A. W,js, Quantum Dots (Springer-Verlag, New York, 1997) p. 1
  5. L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974) https://doi.org/10.1063/1.1655067
  6. R. Dingle, W. Wiemann, and C. H. Henry, Phys. Rev. Lett. 34, 1327 (1975) https://doi.org/10.1103/PhysRevLett.34.1327
  7. H. D. Kim, W. G. Jeong, J. H. Lee, J. S. Yim, D. Lee, R. Stevenson, P. D. Dapkus, J. W. Jang, and S. H. Pyun, Appl. Phys. Lett 87, 083110 (2005) https://doi.org/10.1063/1.2034108
  8. M. K. Zundel, N. Y. Jin-Phillipp, F. Phillipp, K. Eberl, T. Riedl, E. Fehrenbacher, and A. Hangleiter, Appl. Phys. Lett. 73, 1784 (1998) https://doi.org/10.1063/1.122281
  9. Y. Zheng, T. L,, C. Zhang, and W. Su, Physica E 24, 290 (2004) https://doi.org/10.1016/j.physe.2004.05.004
  10. R. H. Blick, R. J. Haug, K. von Klitzing, and K. Eberl, Surf. Sci. 361/362, 595 (1996) https://doi.org/10.1016/0039-6028(96)00478-5
  11. G. Bacher, H. Sch,mig, M. Scheibner, A. Forchel, A. A. Maksimov, A. V. Chernenko, P. S. Dorozhkin, V. D. Kulakovskii, T. Kennedy, and T. L. Reinecke, Physica E 26, 37 (2005) https://doi.org/10.1016/j.physe.2004.08.019
  12. G. Ortner, M. Bayer, A. Kress, A. Forchel, Y. B. Lyanda-Geller, and T. L. Reinecke, Physica E 21, 171 (2004) https://doi.org/10.1016/j.physe.2003.11.011
  13. J. W. Jang, S. H. Pyun, S. H. Lee, I. C. Lee, W. G. Jeong, R. Stevenson, P. D. Dapkus, N. J. Kim, M. S. Hwang, and D. Lee, Appl. Phys. Lett. 85, 3675 (2004) https://doi.org/10.1063/1.1812365
  14. S. M. Sze, Semiconductor Devices - Physics and Technology, 2nd ed (John Wiley & Sons, New York, 2002), p. 101
  15. D. V. Lang, J. Appl. Phys. 45, 3023 (1974) https://doi.org/10.1063/1.1663719
  16. P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press, New York, 1992), p. 336
  17. E. K. Kim, J. S. Kim, H. Hwang, K. Park, E. Yoon, J. H. Kim, I.-W. Park, and Y. J. Park, Jpn. J. Appl. Phys 43, 3825 (2004) https://doi.org/10.1143/JJAP.43.3825