Symmetry of GaAsN Conduction-band Minimum: Resonant Raman Scattering Study

GaAsN 전도띠 바닥의 대칭성: 공명라만산란연구

  • Seong M.J. (Department of Physics, Chung-Ang University)
  • Published : 2006.03.01

Abstract

The symmetry of the conduction-band minimum of $GaAs_{1-x}N_{x}$ is probed by performing resonant Raman scattering (RRS) on thin layers of $GaAs_{1-x}N_{x}(x{\leq}0.7)$ epitaxially grown on Ge substrates. Strong resonance enhancement of the LO(longitudinal optical)-phonon Raman intensity is observed with excitation energies near the $E_0$ as well as $E_+$ transitions, However, in contrast to the distinct LO-phonon line-width resonance enhancement and activation of various X and L zone-boundary phonons brought about slightly below and near the $E_+$ transition, respectively, we have not observed any resonant LO-phonon line-width broadening or activation of sharp zone-boundary phonons near the $E_0$ transition. The observed RRS results reveal that the conduction-band minimum of GaAsN predominantly consists of the delocalized GaAs bulk-like states of ${\Gamma}$ symmetry.

[ $GaAs_{1-x}N_{x}$ ]의 전도띠 바닥전자상태의 특성을 Ge 기판위에 성장시킨 $GaAs_{1-x}N_{x}(x{\leq}0.7)$ 박막에 대한 공명라만산란 실험을 수행함으로써 조사하였다. LO(longitudinal optical)-phonon 라만세기의 강한 공명상승이 $E_+$ 뿐만 아니라 $E_0$ 전이에너지 근처에서 관측되었다. 그러나 $E_+$ 전이에너지 아래와 근처에서 관측되는 분명한 LO-phonon 선폭 공명상승과 다양한 X와 L 영역경계 (zone-boundary) phonon의 활성화와는 대조적으로, $E_0$ 전이에너지 근처에서는 어떠한 LO-phonon 선폭 확장공명이나 날카로운 영역경계 phonon의 활성화가 관측되지 않았다. 관찰된 공명라만산란 결과는 GaAsN의 전도띠 바닥전자상태가 비국소화된 bulk GaAs와 거의 흡사한 ${\Gamma}$대칭 상태로 구성되었다는 사실을 의미한다.

Keywords

References

  1. M. Weyers, M. Sato, and H. Ando, Jpn. J. Appl. Phys. Part 2 31, L853 (1992) https://doi.org/10.1143/JJAP.31.L853
  2. J. D. Perkins, A. Mascarenhas, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 3312 (1999) https://doi.org/10.1103/PhysRevLett.82.3312
  3. W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999) https://doi.org/10.1103/PhysRevLett.82.1221
  4. J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, and B. M. Keyes, J. Cryst. Growth 195, 401 (1998) https://doi.org/10.1016/S0022-0248(98)00563-6
  5. M. Kondow, S. Nakatsuka, T. Kitatani, Y. Yazawa, and M. Okai, Jpn. J. Appl. Phys., Part 1 35, 5711 (1996) https://doi.org/10.1143/JJAP.35.5711
  6. E. D. Jones, N. A. Modine, A. A. Allerman, S. R. Kurtz, A. F. Wright, S. T. Tozer, and X. Wei, Phys. Rev. B 60, 4430 (1999) https://doi.org/10.1103/PhysRevB.60.4430
  7. M. Kozhevnikov, V. Narayanamurti, C. V. Reddy, H. P. Xin, C. W. Tu, A. Mascarenhas, and Y. Zhang, Phys. Rev. B 61, R7861 (2000) https://doi.org/10.1103/PhysRevB.61.R7861
  8. T. Mattila, S.-H. Wei, and A. Zunger, Phys. Rev. B 60, R11 245 (1999)
  9. P. R. C. Kent and A. Zunger, Phys. Rev. B 64, 115208 (2001) https://doi.org/10.1103/PhysRevB.64.115208
  10. W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, and C. Nauka, Phys. Rev. B 62, 4211 (2000) https://doi.org/10.1103/PhysRevB.62.4211
  11. Y. Zhang, A. Mascarenhas, H. P. Xin, and C. W. Tu, Phys. Rev. B 61, 7479 (2000) https://doi.org/10.1103/PhysRevB.61.7479
  12. Y. Zhang, A. Mascarenhas, J. F. Geisz, H. P. Xin, and C. W. Tu, Phys. Rev. B 63, 085205 (2001) https://doi.org/10.1103/PhysRevB.63.085205
  13. Y. Zhang, A. Mascarenhas, H. P. Xin, and C. W. Tu, Phys. Rev. B 63, 161303(R) (2001) https://doi.org/10.1103/PhysRevB.63.161303
  14. Y. Zhang, B. Fluegel, M. Hanna, A. Duda, and A. Mascarenhas, in Progress in Semiconductor Materials for Optoelectronic Applications, edited by E. D. Jones, M. O. Manasreh, K. D. Choquette, and D. Friedman Mater. Res. Soc. Symp. Proc. 692 (Materials Research Society, Warrendale, 2002), p. H2.1.1
  15. A. M. Mintairov, P. A. Blagnov, V. G. Melehin, N. N. Faleev, J. L. Merz, Y. Qiu, S. A. Nikishin, and H. Temkin, Phys. Rev. B 56, 15 836 (1997)
  16. T. Prokofyeva, T. Sauncy, M. Seon, M. Holtz, Y. Qiu, S. A. Nikishin, and H. Temkin, Appl. Phys. Lett. 73, 1409 (1998) https://doi.org/10.1063/1.121959
  17. J. Wagner, K. K,hler, P. Ganser, and N. Herres, Appl. Phys. Lett. 77, 3592 (2000) https://doi.org/10.1063/1.1329167
  18. H. M. Cheong, Y. Zhang, A. Mascarenhas, and J. F. Geisz, Phys. Rev. B 61, 13 687 (2000)
  19. J. Wagner, T. Geppert, K. K,hler, P. Ganser, and N. Herres, J. Appl. Phys. 90, 5027 (2001) https://doi.org/10.1063/1.1412277
  20. M. J. Seong, A. Mascarenhas, and J. F. Geisz, Appl. Phys. Lett. 79, 1297 (2001) https://doi.org/10.1063/1.1399010
  21. M. J. Seong, M. C. Hanna, and A. Mascarenhas, Appl. Phys. Lett. 79, 3974 (2001) https://doi.org/10.1063/1.1424469
  22. D. J. Wolford, J. A. Bradley, K. Fry, and J. Thompson, in Proceedings of the 17th International Conference on the Physics of Semiconductors, edited by J. D. Chadi and W. A. Harrison (Springer, New York, 1985), p. 627
  23. X. Liu, M.-E. Pistol, L Samuelson, S. Schwetlick, and W. Seifert, Appl. Phys. Lett. 56, 1451 (1990) https://doi.org/10.1063/1.102495