The role of CD14 and Toll-like receptors on the release of MMP-B in the LPS recognition pathway

지질 다당질 인지경로에서 기질금속단백분해효소-8 분비에 대한 CD14와 Toll-like receptors의 역할 연구

  • Yang, Seung-Min (Department of Periodontology, School of Dentistry, Seoul National University, Department of Periodontics, Samsung Medical Center, School of Medicine, Sungkyunkwan University) ;
  • Kim, Tae-li (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Seol, Yang-Jo (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Lee, Yang-Moo (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Ku, Young (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Chung, Chong-Pyoung (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Han, Soo-Boo (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Rhyu, In-Chul (Department of Periodontology, School of Dentistry, Seoul National University)
  • 양승민 (서울대학교 치과대학 치주과학교실, 성균관대학교 의과대학 치과학교실) ;
  • 김태일 (서울대학교 치과대학 치주과학교실) ;
  • 설양조 (서울대학교 치과대학 치주과학교실) ;
  • 이용무 (서울대학교 치과대학 치주과학교실) ;
  • 구영 (서울대학교 치과대학 치주과학교실) ;
  • 정종평 (서울대학교 치과대학 치주과학교실) ;
  • 한수부 (서울대학교 치과대학 치주과학교실) ;
  • 류인철 (서울대학교 치과대학 치주과학교실)
  • Published : 2006.09.30

Abstract

1. 연구배경 교원질 분해작용을 하는 호중구의 세포질 효소인 기질금속단백분해효소-8은 치주질환, 류마티스 관절염, 그리고 궤양결장염과 같은 염증성 질환에서 농도가 증가한다고 알려져 있다. 최근에는 A. actinomycetemcomitans의 leukotoxin이 사람호중구에서 기질금속단백분해효소-8의 분비를 유도하는 것이 보고되었다. 이 연구의 목적은 선천면역 체계에서 세포표면 항원무리14, Toll-like 수용기, 그리고 $NF-{\kappa}$ B경로를 통하여 A. actinomycetemcomitans의 지질다당질로 유도된 기질금속단백분해효소-8의 분비 여부와 세포기전을 알아보고자 하였다. 2. 연구재료 및 방법 건강한 개인 제공자(남자 13명, 여자 3명)로부터 얻은 개개인의 20ml 말초혈액을 제조사의 지침에 따라 호중구를 추출한 후 항세포표면 항원무리14와 함께 $4^{\circ}C$에서 30분간 전배양 한 후, $37^{\circ}C$에서 9시간 동안 배양시켰다. 추출한 호중구에 Toll-like 수용기 억제제 또는 $NF-{\kappa}$ B억제제인 TPCK를 첨가한 후 $37^{\circ}C$에서 1시간 동안 전배양하고 $37^{\circ}C$에서 9시간 동안 배양시켰다. 호중구에 세포뼈대 억제제인 cholchicine, nocodazole, demecolcine, 그리고 cytochalasin B를 A. actinomycetemcomitans의 지질다당질과 함께 $37^{\circ}C$에서 9시간 동안 배양시켰다. 기질금속단백분해효소-8 분비량은 효소면역측정법을 통해 결정하였다. 통계처리는 일원배치 분산분석법을 이용하였다(p<0.05). 3. 결과 A. actinomycetemcomitans 지질다당질은 기질금속단백분해효소-8의 분비를 증가시켰다. 기질금속단백분해효소-8의 분비는 항세포표면 항원무리14에 의해서 억제되었지만, 항 Toll-like 수용기2, 항 Toll-like 수용기4 항체는 억제시키지 못했다. $NF-{\kappa}$ B 억제제는 A. actinomycetemcomitans의 지질다당질로 유도된 $NF-{\kappa}$ B 결합 활성도와 기질금속단백분해효소-8 분비를 억제하였다. 미세섬유 중합반응 억제제는 A. actinomycetemcomitans의 지질다당질로 유도된 기질금속단백분해효소-8의 분비를 억제시켰으나, 미세관 중합반응억제제는 억제시키지 못했다. 4. 결론 위의 연구결과를 종합하여 볼 때, 기질금속단백분해효소-8은 A. actinomycetemcomitans의 지질다당질로 유도되며, 세포표면 항원무리-$NF-{\kappa}$ B 경로를 통하여 분비되고, 이 분비 과정은 미세섬유 계통이 관여하는 것으로 보인다.

Keywords

References

  1. Proceedings of the 1996 World Workshop in Periodontics. Lansdowne, Virginia, July 13-17, 1996. Ann Periodontol 1996;1:879-925 https://doi.org/10.1902/annals.1996.1.1.879
  2. Madianos PN, Papapanou PN, Sandros J. Porphyromonas gingivalis infection of oral epithelium inhibits neutrophil transepithelial migration. Infect Immun 1997;65:3983-3990
  3. Janeway CA, Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992;13:11-16 https://doi.org/10.1016/0167-5699(92)90198-G
  4. Frey EA, Miller DS, Jahr TG, et al, Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 1992;176: 1665-1671 https://doi.org/10.1084/jem.176.6.1665
  5. Pugin J, Heumann ID, Tomasz A, et al, CD14 is a pattern recognition receptor. Immunity 1994;1:509-516 https://doi.org/10.1016/1074-7613(94)90093-0
  6. Wright SD. CD14 and innate recognition of bacteria. J Immunol 1995;155:6-8
  7. Delude RL, Savedra R, Jr., Zhao H, et al CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proc Natl Acad Sci USA 1995; 92:9288-9292
  8. Kitchens RL, Munford RS. Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. J BioI Chem 1995;270: 9904-9910 https://doi.org/10.1074/jbc.270.17.9904
  9. Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci USA 2000;97:2163-2167 https://doi.org/10.1073/pnas.040565397
  10. Yoshimura A, Lien E, Ingalls RR, et al, Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999;163:1-5
  11. Lindhe J, Schroeder HE, Page RC, Munzel-Pedrazzoli S, Hugoson A Clinical and stereologic analysis of the course of early gingivitis in dogs. J Periodontal Res 1974;9:314-330 https://doi.org/10.1111/j.1600-0765.1974.tb00687.x
  12. Page RC, Schroeder HE. Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab Invest 1976;34: 235-249
  13. Attstrom R, Egelberg J. Emigration of blood neutrophils and monocytes into the gingival crevices. J Periodontal Res 1970;5: 48-55 https://doi.org/10.1111/j.1600-0765.1970.tb01837.x
  14. Kinane DF. Regulators of tissue destruction and homeostasis as diagnostic aids in periodontology. Periodontol 2000 2000;24: 215-225 https://doi.org/10.1034/j.1600-0757.2000.2240110.x
  15. Ohlsson K, Olsson I, Tynelius-Bratthall G. Neutrophil leukocyte collagenase, elastase and serum protease inhibitors in human gingival crevicles. Acta Odontol Scand 1974; 32:51-59 https://doi.org/10.3109/00016357409002532
  16. Kowashi Y, Jaccard F, Cimasoni G. Increase of free collagenase and neutral protease activities in the gingival crevice during experimental gingivitis in man. Arch Oral Biol 1979;24:645-650 https://doi.org/10.1016/0003-9969(79)90112-2
  17. Haerian A, Adonogianaki E, Mooney J, Docherty JP, Kinane DF. Gingival crevicular stromelysin, collagenase and tissue inhibitor of metalloproteinases levels in healthy and diseased sites. J Clin Periodontol 1995;22:505-509 https://doi.org/10.1111/j.1600-051X.1995.tb00797.x
  18. Haerian A, Adonogianaki E, Mooney J, Manos A, Kinane DF. Effects of treatment on gingival crevicular collagenase, stromelysin and tissue inhibitor of metalloproteinases and their ability to predict response to treatment. J Clin Periodontol 1996;23:83-91 https://doi.org/10.1111/j.1600-051X.1996.tb00539.x
  19. Ding Y, Haapasalo M, Kerosuo E, et al, Release and activation of human neutrophil matrix metallo- and serine proteinases during phagocytosis of Fusobacterium nucleatum, Porphyromonas gingivalis and Treponema denticola. J Clin Periodontol 1997;24:237-248 https://doi.org/10.1111/j.1600-051X.1997.tb01837.x
  20. Claesson R, Johansson A, Belibasakis G, Hanstrom L, Kalfas S. Release and activation of matrix metalloproteinase 8 from human neutrophils triggered by the leukotoxin of Actinobacillus actinomycetemcomitans. J Periodontal Res 2002;37:353-359 https://doi.org/10.1034/j.1600-0765.2002.00365.x
  21. Yoshimura A, Hara Y, Kaneko T, Kato I Secretion of IL-1 beta, TNF-alpha, IL-8 and IL-lra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. J Periodontal Res 1997;32:279-286 https://doi.org/10.1111/j.1600-0765.1997.tb00535.x
  22. Sugita N, Kimura A, Matsuki Y, et al, Activation of transcription factors and IL-8 expression in neutrophils stimulated with lipopolysaccharide from Porphyromonas gingivalis. Inflammation 1998;22:253-267 https://doi.org/10.1023/A:1022344031223
  23. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-397 https://doi.org/10.1038/41131
  24. Yang RE, Mrrk MR, Gray A, et al, Toll-like receptor- 2 mediates lipopolysaccharide -induced cellular signalling. Nature 1998;395:284-288 https://doi.org/10.1038/26239
  25. Sabroe I, Prince LR, Jones EC, et al, Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J Immunol 2003;170:5268-5275 https://doi.org/10.4049/jimmunol.170.10.5268
  26. Tabeta K, Yamazaki K, Akashi S, et al, Toll-like receptors confer responsiveness to lipopolysaccharide from Porphyromonas gingivalis in human gingival fibroblasts. Infect Immun 2000;68:3731-3735 https://doi.org/10.1128/IAI.68.6.3731-3735.2000
  27. Wang PL, Azuma Y, Shinohara M, Ohura K. Toll-like receptor 4-mediated signal pathway induced by Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts. Biochem Biophys Res Commun 2000;273:1161-1167 https://doi.org/10.1006/bbrc.2000.3060
  28. Bainbridge BW, Coats SR, Darveau RP. Porphyromonas gingivalis lipopolysaccharide displays functionally diverse interactions with the innate host defense system. Ann Periodontol 2002;7:29-37 https://doi.org/10.1902/annals.2002.7.1.29
  29. Hirschfeld M, Weis JJ, Toshchakov V, et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001;69:1477-1482 https://doi.org/10.1128/IAI.69.3.1477-1482.2001
  30. Ryder MI, Niederman R, Taggart EJ. The cytoskeleton of human polymorphonuclear leukocytes: phagocytosis and degranulation. Anat Rec 1982;203:317-327 https://doi.org/10.1002/ar.1092030302
  31. Andreu JM, Timasheff SN. Tubulin bound to colchicine forms polymers different from microtubules. Proc Natl Acad Sci USA 1982;79:6753-6756 https://doi.org/10.1073/pnas.79.22.6753
  32. Jordan MA, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci 1992;102 :401-416
  33. van der Loo B, Hong Y, Hancock V, Martin JF, Erusalimsky JD. Antimicrotubule agents induce polyploidization of human leukaemic cell lines with megakaryocytic features. Eur J Clin Invest 1993;23:621-629 https://doi.org/10.1111/j.1365-2362.1993.tb00723.x
  34. Brunkhorst B, Niederman R. Ammonium decreases human polymorphonuclear leukocyte cytoskeletal actin. Infect Immun 1991; 59:1378-1386
  35. White JR, Naccache PH, Sha'afi RI Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. J BioI Chem 1983;258:14041-14047
  36. Isowa N, Liu M. Role of LPS-induced microfilament depolymerization In MIP-2 production from rat pneumocytes. Am J Physiol Lung Cell Mol Physiol 2001;280: L762-770 https://doi.org/10.1152/ajplung.2001.280.4.L762