References
- Proceedings of the 1996 World Workshop in Periodontics. Lansdowne, Virginia, July 13-17, 1996. Ann Periodontol 1996;1:879-925 https://doi.org/10.1902/annals.1996.1.1.879
- Madianos PN, Papapanou PN, Sandros J. Porphyromonas gingivalis infection of oral epithelium inhibits neutrophil transepithelial migration. Infect Immun 1997;65:3983-3990
- Janeway CA, Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992;13:11-16 https://doi.org/10.1016/0167-5699(92)90198-G
- Frey EA, Miller DS, Jahr TG, et al, Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 1992;176: 1665-1671 https://doi.org/10.1084/jem.176.6.1665
- Pugin J, Heumann ID, Tomasz A, et al, CD14 is a pattern recognition receptor. Immunity 1994;1:509-516 https://doi.org/10.1016/1074-7613(94)90093-0
- Wright SD. CD14 and innate recognition of bacteria. J Immunol 1995;155:6-8
- Delude RL, Savedra R, Jr., Zhao H, et al CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proc Natl Acad Sci USA 1995; 92:9288-9292
- Kitchens RL, Munford RS. Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. J BioI Chem 1995;270: 9904-9910 https://doi.org/10.1074/jbc.270.17.9904
- Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci USA 2000;97:2163-2167 https://doi.org/10.1073/pnas.040565397
- Yoshimura A, Lien E, Ingalls RR, et al, Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999;163:1-5
- Lindhe J, Schroeder HE, Page RC, Munzel-Pedrazzoli S, Hugoson A Clinical and stereologic analysis of the course of early gingivitis in dogs. J Periodontal Res 1974;9:314-330 https://doi.org/10.1111/j.1600-0765.1974.tb00687.x
- Page RC, Schroeder HE. Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab Invest 1976;34: 235-249
- Attstrom R, Egelberg J. Emigration of blood neutrophils and monocytes into the gingival crevices. J Periodontal Res 1970;5: 48-55 https://doi.org/10.1111/j.1600-0765.1970.tb01837.x
- Kinane DF. Regulators of tissue destruction and homeostasis as diagnostic aids in periodontology. Periodontol 2000 2000;24: 215-225 https://doi.org/10.1034/j.1600-0757.2000.2240110.x
- Ohlsson K, Olsson I, Tynelius-Bratthall G. Neutrophil leukocyte collagenase, elastase and serum protease inhibitors in human gingival crevicles. Acta Odontol Scand 1974; 32:51-59 https://doi.org/10.3109/00016357409002532
- Kowashi Y, Jaccard F, Cimasoni G. Increase of free collagenase and neutral protease activities in the gingival crevice during experimental gingivitis in man. Arch Oral Biol 1979;24:645-650 https://doi.org/10.1016/0003-9969(79)90112-2
- Haerian A, Adonogianaki E, Mooney J, Docherty JP, Kinane DF. Gingival crevicular stromelysin, collagenase and tissue inhibitor of metalloproteinases levels in healthy and diseased sites. J Clin Periodontol 1995;22:505-509 https://doi.org/10.1111/j.1600-051X.1995.tb00797.x
- Haerian A, Adonogianaki E, Mooney J, Manos A, Kinane DF. Effects of treatment on gingival crevicular collagenase, stromelysin and tissue inhibitor of metalloproteinases and their ability to predict response to treatment. J Clin Periodontol 1996;23:83-91 https://doi.org/10.1111/j.1600-051X.1996.tb00539.x
- Ding Y, Haapasalo M, Kerosuo E, et al, Release and activation of human neutrophil matrix metallo- and serine proteinases during phagocytosis of Fusobacterium nucleatum, Porphyromonas gingivalis and Treponema denticola. J Clin Periodontol 1997;24:237-248 https://doi.org/10.1111/j.1600-051X.1997.tb01837.x
- Claesson R, Johansson A, Belibasakis G, Hanstrom L, Kalfas S. Release and activation of matrix metalloproteinase 8 from human neutrophils triggered by the leukotoxin of Actinobacillus actinomycetemcomitans. J Periodontal Res 2002;37:353-359 https://doi.org/10.1034/j.1600-0765.2002.00365.x
- Yoshimura A, Hara Y, Kaneko T, Kato I Secretion of IL-1 beta, TNF-alpha, IL-8 and IL-lra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. J Periodontal Res 1997;32:279-286 https://doi.org/10.1111/j.1600-0765.1997.tb00535.x
- Sugita N, Kimura A, Matsuki Y, et al, Activation of transcription factors and IL-8 expression in neutrophils stimulated with lipopolysaccharide from Porphyromonas gingivalis. Inflammation 1998;22:253-267 https://doi.org/10.1023/A:1022344031223
- Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-397 https://doi.org/10.1038/41131
- Yang RE, Mrrk MR, Gray A, et al, Toll-like receptor- 2 mediates lipopolysaccharide -induced cellular signalling. Nature 1998;395:284-288 https://doi.org/10.1038/26239
- Sabroe I, Prince LR, Jones EC, et al, Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J Immunol 2003;170:5268-5275 https://doi.org/10.4049/jimmunol.170.10.5268
- Tabeta K, Yamazaki K, Akashi S, et al, Toll-like receptors confer responsiveness to lipopolysaccharide from Porphyromonas gingivalis in human gingival fibroblasts. Infect Immun 2000;68:3731-3735 https://doi.org/10.1128/IAI.68.6.3731-3735.2000
- Wang PL, Azuma Y, Shinohara M, Ohura K. Toll-like receptor 4-mediated signal pathway induced by Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts. Biochem Biophys Res Commun 2000;273:1161-1167 https://doi.org/10.1006/bbrc.2000.3060
- Bainbridge BW, Coats SR, Darveau RP. Porphyromonas gingivalis lipopolysaccharide displays functionally diverse interactions with the innate host defense system. Ann Periodontol 2002;7:29-37 https://doi.org/10.1902/annals.2002.7.1.29
- Hirschfeld M, Weis JJ, Toshchakov V, et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001;69:1477-1482 https://doi.org/10.1128/IAI.69.3.1477-1482.2001
- Ryder MI, Niederman R, Taggart EJ. The cytoskeleton of human polymorphonuclear leukocytes: phagocytosis and degranulation. Anat Rec 1982;203:317-327 https://doi.org/10.1002/ar.1092030302
- Andreu JM, Timasheff SN. Tubulin bound to colchicine forms polymers different from microtubules. Proc Natl Acad Sci USA 1982;79:6753-6756 https://doi.org/10.1073/pnas.79.22.6753
- Jordan MA, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci 1992;102 :401-416
- van der Loo B, Hong Y, Hancock V, Martin JF, Erusalimsky JD. Antimicrotubule agents induce polyploidization of human leukaemic cell lines with megakaryocytic features. Eur J Clin Invest 1993;23:621-629 https://doi.org/10.1111/j.1365-2362.1993.tb00723.x
- Brunkhorst B, Niederman R. Ammonium decreases human polymorphonuclear leukocyte cytoskeletal actin. Infect Immun 1991; 59:1378-1386
- White JR, Naccache PH, Sha'afi RI Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. J BioI Chem 1983;258:14041-14047
- Isowa N, Liu M. Role of LPS-induced microfilament depolymerization In MIP-2 production from rat pneumocytes. Am J Physiol Lung Cell Mol Physiol 2001;280: L762-770 https://doi.org/10.1152/ajplung.2001.280.4.L762