DOI QR코드

DOI QR Code

The controllable fluid dash pot damper performance

  • Samali, Bijan (Centre for Built Infrastructure Research, University of Technology) ;
  • Widjaja, Joko (Centre for Built Infrastructure Research, University of Technology) ;
  • Reizes, John (Faculty of Engineering, University of Technology)
  • Received : 2004.03.27
  • Accepted : 2006.03.14
  • Published : 2006.07.25

Abstract

The use of smart dampers to optimally control the response of structures is on the increase. To maximize the potential use of such damper systems, their accurate modeling and assessment of their performance is of vital interest. In this study, the performance of a controllable fluid dashpot damper, in terms of damper forces, damper dynamic range and damping force hysteretic loops, respectively, is studied mathematically. The study employs a damper Bingham-Maxwell (BingMax) model whose mathematical formulation is developed using a Fourier series technique. The technique treats this one-dimensional Navier-Stokes's momentum equation as a linear superposition of initial-boundary value problems (IBVPs): boundary conditions, viscous term, constant Direct Current (DC) induced fluid plug and fluid inertial term. To hold the formulation applicable, the DC current level to the damper is supplied as discrete constants. The formulation and subsequent simulation are validated with experimental results of a commercially available magneto rheological (MR) dashpot damper (Lord model No's RD-1005-3) subjected to a sinusoidal stroke motion using a 'SCHENK' material testing machine in the Materials Laboratory at the University of Technology, Sydney.

Keywords

References

  1. Bica, I. (2002), 'Damper with magneto-rheological suspension', J. Magnetism and Magnetic Materials, 241, 196-200 https://doi.org/10.1016/S0304-8853(02)00009-4
  2. Bolter, R. and Janocha, H. (1997), 'Design rules for MR fluid actuators in different working modes', SPIE 3045, 148-158 https://doi.org/10.1117/12.274197
  3. Burton, S.A., Makris, N, Konstantopoulos, I. and Antsaklis, P.J. (1996), 'Modeling the response of ER damper: phenomenology and emulation', J. Eng. Mech., ASCE, 122(9), 897-906 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:9(897)
  4. Carlson, J.D., Catanzarite, D.M. and St. Clair, K.A. (1996), 'Commercial magneto-rheological fluid devices', Int. J. Modern Physics B 10(23-24), 2857-2865 https://doi.org/10.1142/S0217979296001306
  5. Chompucot, C. (2000), 'Modeling ER and MR dampers', Master Thesis, Duke University, Durham, NC 27708
  6. Gavin, H.P., Hanson, R.D. and Filisko, F.E. (1996a), 'Electrorheological dampers, Part I: analysis and design', J. Appl. Mech., ASME, 63(9), 669-675 https://doi.org/10.1115/1.2823348
  7. Gavin, H.P., Hanson, R.D. and Filisko, F.E. (1996b), 'Electrorheological dampers, Part II: testing and modeling', J. Appl. Mech., ASME, 63(9), 676-682 https://doi.org/10.1115/1.2823349
  8. Gorodkin, S, Lukianovich, A. and Kordonski, W. (1998), 'Magnetorheological throttle valve in passive damping systems', Proc. 4th European and 2nd MiMR Conference, 261-266
  9. Janocha, H. (2001), 'Application potential of magnetic field driven new actuators', Sensors and Actuators A, 91, 126-132 https://doi.org/10.1016/S0924-4247(01)00619-7
  10. Jansen, L.M. and Dyke, S.J. (2000), 'Semi-active control strategies for MR dampers: A comparative study', J. Eng. Mech., ASCE, 126(8), 795-803 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(795)
  11. Kamath, G.M. and Wereley, N.M. (1997), 'Nonlinear modeling and performance prediction of electrorheological fluid dampers', SPIE, 3045, 108-118 https://doi.org/10.1117/12.274193
  12. Lee, D.Y. and Wereley, N.M. (1999), 'Quasi-steady herschel-bulkley analysis of electro- and magneto- rheological flow mode dampers', J. Intelligent Mater. Sys. Struct. 10(10), 761-769 https://doi.org/10.1106/E3LT-LYN6-KMT2-VJJD
  13. Lindler, J.E. and Wereley, N.M. (1999), 'Double adjustable shock absorbers using electrorheological fluid', Proc. 7th Int. Conf. on Electro-Rheological Fluids and Magneto-Rheological Suspensions. Honolulu, Hawai, World Publishing Co. Pte, Ltd., Farrer Road, Singapore, 783-790
  14. Makris, N., Burton, S.A., Hill, D. and Jordan, M. (1996), 'Analysis and design of ER damper for seismic protection of structures', J. Eng. Mech., ASCE, 122(10), 1003-1011 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:10(1003)
  15. Massey, BS (1991), Mechanics of Fluids, Chapman & Hall, 2-6 Boundary Row, London
  16. McMahon, S. and Makris, N. (1997), 'Large-scale ER-damper for seismic protection', SPIE, 3045, 140-147 https://doi.org/10.1117/12.274196
  17. Park, W.C., Choi, S.B. and Suh, M.S. (1999b), 'Material characteristics of an ER fluid and its influence on damping forces of an ER damper Part II: damping forces', Mater. Design, 20, 325-330 https://doi.org/10.1016/S0261-3069(99)00037-0
  18. Sims, N.D., Peel, D.J., Stanway, R., Johnson, A.R. and Bullough, W.A. (2000), 'The electrorheological longstroke damper: A new modelling technique with experimental validation', J. Sound Vib, 229(2), 207-227 https://doi.org/10.1006/jsvi.1999.2487
  19. Spencer, Jr., B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), 'Phenomenological model of a magnetorheological damper', J. Eng. Mech., ASCE, 123(3), 230-238 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  20. Spencer, Jr., B.F., Yang, G., Carlson, J.D. and Sain, M.K. (1998), 'Smart dampers for seismic protection of structures: a full-scale study', Proc. 2nd World Conf. on Structural Control, Vol. 1, Kyoto, Japan, 417-426
  21. Wereley, N.M., Pang. L. and Kamath. G.M. (1998), 'Idealized hysteresis modeling of electrorheological and magneto-rheological dampers', J. Intelligent Mater. Sys. Struct. 9(8), 642-649 https://doi.org/10.1177/1045389X9800900810
  22. Widjaja, J., Samali, B. and Li, J. (2003), 'ER and MR duct flow in shear-flow mode using herschel-bulkley constitutive model', J. Eng. Mech., ASCE, 129(12), 1459-1465 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1459)
  23. Yang, G. (2001), 'Large-scale magnetorheological fluid damper for vibration mitigation: modeling, testing and control', PhD Dissertation, the University of Notre Dame, Notre Dame, Indiana
  24. Yang, G, Spencer, Jr., B.F., Carlson, J.D. and Sain, M.K. (2002), 'Large-scale MR fluid dampers: modeling and dynamic performance considerations', Eng. Struct., 24, 309-323 https://doi.org/10.1016/S0141-0296(01)00097-9

Cited by

  1. Functionally upgraded passive devices for seismic response reduction vol.4, pp.6, 2008, https://doi.org/10.12989/sss.2008.4.6.741