References
- Amamth, Nirmal Nath, 'Capcitance and inductionace sensors for the location of faults in wires', MS Thesis, University of Utah, 2004
- Arcade Electronics, Psiber CT50 CableTool Multifunction Cable Meter, http://www.arcade-electronics.com/psiber/psiber_ct50_cabletool.html
- Basava, Santi B. (2004), 'Detection and location of cable faults using reflectometry methods', MS Thesis, Utah State University
- Campbell Scientific, 'TDR100 Instruction Manual', [ftp://ftp.campbellsci.com/pub/outgoing/manuals/tdr100.pdf]
- Chen, C. S., Roemer, L. E. and Grumbach, R. S. (1978), 'Cable diagnostics for power cables', IEEE Annual Conference of Electrical Eng. Problems in Rubber and Plastic Industries, 20-22, Apr.
- Chung, You Chung and etc. (2003), 'Non-destructive fault location on aging aircraft wiring networks Part 1-Cost-optimized solutions', IEEE AP-S and USNC/URSI National Radio Science Digest, Columbus, Ohio
- Chung, You Chung, Amamath, Nirmal and Furse, Cynthia, 'Capacitance and inductance sensors for open and short ends circuit wire faults detection', IEEE Trans. Instrument and Measurements, IM-8025, in review
- Chung, You Chung, Furse, Cynthia, Pruitt, Jeremy, (2005) 'Application of phase detection frequency domain reflectometry for locating faults in an F -18 flight control harness', IEEE Trans. Electromagnetic Compatibility, 47(2), 327-334 https://doi.org/10.1109/TEMC.2005.847403
- CM Technologies, http://www.ecadusa.com/prod01.htm
- Conley, Tim (2003), 'The relationship among component age, usage (reliability) and cost of naval aviation repairables', Aging Aircraft Conference 2003, New Orleans, Sep.
- DIT-MCO Model 2115-Benchtop. http://www.ditmco.com/wiring.asp?id=2
- Eclypse Co. SWR meter, http://www.eclypse.org/Home.htm
- Furse, C. and Kamdar, N. (2002), 'An inexpensive distance measuring system for navigation of robotic vehicle', Microwave and Optical Tech. Letters, 33(2). 84-97, April https://doi.org/10.1002/mop.10241
- Furse, C., Haupt, R. (2001), 'Down to the wire: The hidden hazard of aging aircraft wiring', IEEE Spectrum, 35-39, Feb.
- Furse, C., Smith, P., Safavi, M. and Lo, C. (2005), 'Feasibility of spread spectrum sensors for location of Arcs on live wires', IEEE Sensors J., 5(6), 1445-1450 https://doi.org/10.1109/JSEN.2005.858900
- Furse, Cynthia, Chung, You Chung, Dangol, Rakesh, Nielsen, Marc, Mabey, Glen, Woodward, Raymond, (2003), 'Frequency domain reflectometry for on board testing of aging aircraft wiring', IEEE Trans. Electromagnetic Compatibility, 306-315, May
- Furse, Cynthia, Lo, Chet, Chung, You Chung, Pendayala, Praveen and Nagoti, Kedamath (2005), 'Spread spectrum sensors for critical fault location on live wire networks', J. Struct. Control Health Monitoring, 12(3/4), 257-267 https://doi.org/10.1002/stc.69
- Green, E. (1999), 'A simplified derivation of the capacitance of a two-wire transmission line', IEEE Transactions on Microwave Theory and Techniques, 47(3), 365-366, Mar. https://doi.org/10.1109/22.750243
- Hayt, W. H. (1989), Engineering Electromagnetics, 5th edition, McGraw-Hill Book Co.
- Iskander, M. F., Electromagnetic Fields and Waves., Englewood Cliffs, NJ: Prentice Hall, 1992
- Jani, Alok (2003), 'Location of small frays using TDR,' MS Thesis, Utah State University, Logan. Utah, 2003
- Griffiths, Lance, Parakh, Rohit, Furse, Cynthia and Baker, Brittany (2005), 'The Invisible Fray: A critical analysis of the use of reflectomtry for Fray location', Accepted to IEEE J of Sensors
- Lloyd, Robin (1999a), '64 cases of wiring problems found on shuttle fleet', CNN Reports Sep. 3, http://www.cnn.com/TECH/space/9909/03/shuttle.repairs/
- Lloyd, Robin (1999b), 'NASA delays shuttle launch to inspect wiring', CNN Reports Aug. 13, http://www.cnn.com/TECH/space/9908/13/shuttle.update/
- Mackay, N. A. and Penstone, S. R. (1974), 'High-sensitivity narrow-band time-domain reflectometer', IEEE Trans. Instrumentation and Measurement, 23(2), 155-158, June https://doi.org/10.1109/TIM.1974.4314245
- Mahoney, Arthur, Lo, Chet, Chung, You Chung, and Furse, Cynthia, 'Use of genetic algorithms and reflectometry for identification of network topologies', IEEE Trans Electromagnetic Compatibility
- Medelius, P. J., Simson, H. J. (1999), 'Non-intrusive impedance-based cable tester', US Patent 5977773, Nov.
- NASA (2000), Wiring Integrity Research (WIRE) Pilot Study A0SP-001-XB1, August
- NSTC (2000), 'Review of federal programs for wire system safety', White House Report, Nov.
- Oppenheim, A. V. (1975), Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N.J.
- Pendayala, Praveen K. (2004), 'Development of algorithms for accurate wire fault location using spread spectrum reflectometry', MS Thesis, University of Utah
- Phoenix Aviation & Technology, http://tooling.tycoelectronics.com/pdflEmbedded.pdf
- Schmidt, Mark (2002), 'Use of TDR for cable testing', MS Thesis, Utah State University, Logan, Utah
- Smith, Paul (2003), 'Spread spectrum time domain reflectometry', Ph.D. dissertation, Utah State University
- Tsai, P., Lo, C; Chung, Y. C. and Furse, C. M. (2005), 'Mixed signal reflectometer for location of faults on aging wiring', IEEE Sensor Journal, 5(6), 1479-1482 https://doi.org/10.1109/JSEN.2005.858894
- Waddoups, Brent (2001), 'Analysis of reflectometry for detection of chafed aircraft wiring insulation', MS Thesis, Utah State University, Logan, Utah, (all theses and dissertations in this paper can be obtained from: www.lib.umi.com)
- Wadell, B. (1991), Transmission Line Design Handbook, Artech House, Norwood, MA
- White, Eddie (2004), Personal Communication, 4/13/2004
-
3M
$^{TM}$ Advanced Systems Tester 900AST http://products3.3m.com/catalog/us/en001/govemment/gsa/node_ G4Q48DLDN3be/root_GS3RBW6QFVgv/vroot_GSL4YG63GRge/gvel_W4S 153Z2F4gl/theme_us_gsa_3_0/command_AbcPageHandler/output_html
Cited by
- Development of a Monitoring System for Multichannel Cables Using TDR vol.63, pp.8, 2014, https://doi.org/10.1109/TIM.2014.2304353
- Network fault breakpoints detection based on the auto-negotiation signal vol.30, pp.5, 2013, https://doi.org/10.3724/SP.J.1249.2013.05508
- Diagnosis of wiring networks using Particle Swarm Optimization and Genetic Algorithms vol.40, pp.7, 2014, https://doi.org/10.1016/j.compeleceng.2014.07.002
- Development of Coupler for Live Cable Fault Detection Based on Reflectometry vol.17, pp.9, 2016, https://doi.org/10.5762/KAIS.2016.17.9.401
- Detection and Location of Defects in Wiring Networks Using Time-Domain Reflectometry and Neural Networks vol.47, pp.5, 2011, https://doi.org/10.1109/TMAG.2010.2089503
- Quantifying Device Degradation in Live Power Converters Using SSTDR Assisted Impedance Matrix vol.29, pp.6, 2014, https://doi.org/10.1109/TPEL.2013.2273556
- A Noniterative Method for Locating Soft Faults in Complex Wire Networks vol.62, pp.3, 2013, https://doi.org/10.1109/TVT.2013.2237796
- Locating Wire Short Fault for In-Vehicle Controller Area Network with Resistance Estimation Approach vol.9, pp.1, 2016, https://doi.org/10.4271/2016-01-0065
- Physics-Based Precursor Wiring Diagnostics for Shielded-Twisted-Pair Cable vol.64, pp.2, 2015, https://doi.org/10.1109/TIM.2014.2347216
- Location of Wire Faults Using Chaotic Signal vol.32, pp.3, 2011, https://doi.org/10.1109/LED.2010.2097237
- Detection of Defects in Wiring Networks Using Time Domain Reflectometry vol.46, pp.8, 2010, https://doi.org/10.1109/TMAG.2010.2043720
- Research on Key Technologies of Detecting 1553B Avionics Data Bus Network vol.9, pp.3, 2013, https://doi.org/10.1016/j.dt.2013.09.019
- Experimental Validation of the Inverse Scattering Method for Distributed Characteristic Impedance Estimation vol.63, pp.6, 2015, https://doi.org/10.1109/TAP.2015.2417215
- Design and Construction of Test Field for Low Voltage Under Cable Fault Location Detection vol.16, pp.10, 2015, https://doi.org/10.5762/KAIS.2015.16.10.6666
- Intermittent Fault Location on Live Electrical Wiring Systems vol.1, pp.1, 2008, https://doi.org/10.4271/2008-01-2932
- Analysis of a capacitive sensor for the evaluation of circular cylinders with a conductive core vol.23, pp.4, 2012, https://doi.org/10.1088/0957-0233/23/4/045102
- Performance improvements of wire fault diagnosis approach based on time-domain reflectometry vol.11, pp.5, 2017, https://doi.org/10.1049/iet-smt.2016.0427
- On-site non-invasive condition assessment for cement mortar–lined metallic pipelines by time-domain fluid transient analysis vol.14, pp.5, 2015, https://doi.org/10.1177/1475921715591875
- Experimental Evaluation of the Inverse Scattering Method for Electrical Cable Fault Diagnosis vol.48, pp.21, 2015, https://doi.org/10.1016/j.ifacol.2015.09.619
- Diagnosis of Multi-Fault Wiring Network Using Time-Domain Reflectometry and Electromagnetism-Like Mechanism vol.33, pp.2, 2013, https://doi.org/10.1080/02726343.2013.756291
- Performance comparison of TDR-based systems for permanent and diffused detection of water content and leaks vol.28, pp.1, 2017, https://doi.org/10.1088/1361-6501/aa4e9b
- A New Algorithm for Wire Fault Location Using Time-Domain Reflectometry vol.14, pp.4, 2014, https://doi.org/10.1109/JSEN.2013.2294193
- Recent progress in wiring networks diagnosis for automotive applications vol.30, pp.4, 2011, https://doi.org/10.1108/03321641111133091
- Wiring fault detection with Boolean-chaos time-domain reflectometry vol.80, pp.1-2, 2015, https://doi.org/10.1007/s11071-014-1888-x
- No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research vol.123, 2014, https://doi.org/10.1016/j.ress.2013.10.013
- Statistical variation of wire parameters within complex aerospace networks vol.58, pp.9, 2016, https://doi.org/10.1002/mop.29983
- Detection and Location of Cable Fault Using Improved SSTDR vol.65, pp.9, 2016, https://doi.org/10.5370/KIEE.2016.65.9.1583
- Development of Portable Cable Fault Detection System with Automatic Fault Distinction and Distance Measurement vol.65, pp.10, 2016, https://doi.org/10.5370/KIEE.2016.65.10.1774
- Soft fault detection in cables using the cluster time-frequency domain reflectometry vol.2, pp.1, 2013, https://doi.org/10.1109/MEMC.2013.6512221
- Location of Wire Faults Using Chaotic Signal Generated by an Improved Colpitts Oscillator vol.24, pp.04, 2014, https://doi.org/10.1142/S0218127414500539
- Model-based identification of wire network topology vol.55, 2014, https://doi.org/10.1016/j.measurement.2014.05.008
- Wire Fault Location in Coaxial Cables by Impedance Spectroscopy vol.13, pp.11, 2013, https://doi.org/10.1109/JSEN.2013.2269218
- A capacitive probe for quantitative nondestructive evaluation of wiring insulation vol.52, 2012, https://doi.org/10.1016/j.ndteint.2012.08.010
- A Fault Diagnosis Scheme for Aircraft Multibranches Wiring Network Based on Matching Algorithm vol.11, pp.6, 2015, https://doi.org/10.1155/2015/158364
- Wire Fault Diagnosis in the Frequency Domain by Impedance Spectroscopy vol.64, pp.8, 2015, https://doi.org/10.1109/TIM.2014.2386918
- Connector impedance and frequency modes in aerospace wiring systems vol.59, pp.1, 2017, https://doi.org/10.1002/mop.30233
- Propagation measurement and statistical modeling for wireless sensor systems aboard helicopters vol.44, pp.4, 2008, https://doi.org/10.1109/TAES.2008.4667735
- An efficient technique based on DORT method to locate multiple soft faults in wiring networks vol.19, pp.4, 2016, https://doi.org/10.1109/MIM.2016.7524201
- Wiring Diagnostics Via $\ell_1$-Regularized Least Squares vol.10, pp.7, 2010, https://doi.org/10.1109/JSEN.2009.2037823
- A Model-Based Probabilistic Inversion Framework for Characterizing Wire Fault Detection Using TDR vol.60, pp.5, 2011, https://doi.org/10.1109/TIM.2011.2105030
- Locating Multiple Soft Faults in Wire Networks Using an Alternative DORT Implementation vol.65, pp.2, 2016, https://doi.org/10.1109/TIM.2015.2498559
- Non-destructive diagnosis of wiring networks using time domain reflectometry and an improved black hole algorithm vol.32, pp.3, 2017, https://doi.org/10.1080/10589759.2016.1200576
- Echo Response of Faults in Transmission Lines: Models and Limitations to Fault Detection vol.64, pp.12, 2016, https://doi.org/10.1109/TMTT.2016.2608774
- Distributed Reflectometry Method for Wire Fault Location Using Selective Average vol.10, pp.2, 2010, https://doi.org/10.1109/JSEN.2009.2033946
- Capacitance and Inductance Sensor Circuits for Detecting the Lengths of Open- and Short-Circuited Wires vol.58, pp.8, 2009, https://doi.org/10.1109/TIM.2009.2014617
- Fault Detection of Low Voltage Cable using Time-Frequency Correlation in SSTDR vol.64, pp.3, 2015, https://doi.org/10.5370/KIEE.2015.64.3.498
- A Statistical Study of DORT Method for Locating Soft Faults in Complex Wire Networks vol.54, pp.3, 2018, https://doi.org/10.1109/TMAG.2017.2765463
- Reflectometric System for Continuous and Automated Monitoring of Irrigation in Agriculture vol.2018, pp.2314-7539, 2018, https://doi.org/10.1155/2018/2849250
- An intelligent wire fault diagnosis approach using time domain reflectometry and pattern recognition network vol.34, pp.1, 2019, https://doi.org/10.1080/10589759.2018.1559312
- CHAOS TIME-DOMAIN REFLECTOMETRY FOR FAULT LOCATION ON LIVE WIRES vol.5, pp.2, 2006, https://doi.org/10.11948/2015022
- REFLECTOMETRY ON ASYMMETRIC TRANSMISSION LINE SYSTEMS vol.89, pp.None, 2006, https://doi.org/10.2528/pierm19110702
- Wiring networks diagnosis using time‐domain reflectometry and support vector machines vol.14, pp.2, 2020, https://doi.org/10.1049/iet-smt.2019.0122
- Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations vol.3, pp.6, 2006, https://doi.org/10.1038/s41928-020-0415-y
- Liquid metal gives transmission lines a softer touch vol.3, pp.6, 2020, https://doi.org/10.1038/s41928-020-0431-y
- Identification and Localization of Track Circuit False Occupancy Failures Based on Frequency Domain Reflectometry vol.20, pp.24, 2006, https://doi.org/10.3390/s20247259
- A SSTDR Methodology, Implementations, and Challenges vol.21, pp.16, 2006, https://doi.org/10.3390/s21165268
- Localization of Disconnection Faults in PV Installations Using the Multiple Frequencies Injection Method vol.14, pp.21, 2006, https://doi.org/10.3390/en14217346
- Fault detection and location in power distribution systems: The usefulness of the HS-OFDM scheme for time-domain reflectometry vol.203, pp.None, 2006, https://doi.org/10.1016/j.epsr.2021.107600
- Analysis of typical PLC pulses for sensing high-impedance faults based on time-domain reflectometry vol.135, pp.None, 2006, https://doi.org/10.1016/j.ijepes.2021.107168