DOI QR코드

DOI QR Code

A critical comparison of reflectometry methods for location of wiring faults

  • Furse, Cynthia (University of Utah Department of Electrical and Computer Engineering) ;
  • Chung, You Chung (Information and Communication Engineering Department, Daegu University) ;
  • Lo, Chet (University of Utah Department of Electrical and Computer Engineering) ;
  • Pendayala, Praveen (University of Utah Department of Electrical and Computer Engineering)
  • Received : 2004.08.30
  • Accepted : 2005.12.15
  • Published : 2006.01.25

Abstract

Aging wiring in buildings, aircraft and transportation systems, consumer products, industrial machinery, etc. is among the most significant potential causes of catastrophic failure and maintenance cost in these structures. Smart wire health monitoring can therefore have a substantial impact on the overall health monitoring of the system. Reflectometry is commonly used for locating faults on wire and cables. This paper compares Time domain reflectometry (TDR), frequency domain reflectometry (FDR), mixed signal reflectometry (MSR), sequence time domain reflectometry (STDR), spread spectrum time domain reflectometry (SSTDR) and capacitance sensors in terms of their accuracy, convenience, cost, size, and ease of use. Advantages and limitations of each method are outlined and evaluated for several types of aircraft cables. The results in this paper can be extrapolated to other types of wire and cable systems.

Keywords

References

  1. Amamth, Nirmal Nath, 'Capcitance and inductionace sensors for the location of faults in wires', MS Thesis, University of Utah, 2004
  2. Arcade Electronics, Psiber CT50 CableTool Multifunction Cable Meter, http://www.arcade-electronics.com/psiber/psiber_ct50_cabletool.html
  3. Basava, Santi B. (2004), 'Detection and location of cable faults using reflectometry methods', MS Thesis, Utah State University
  4. Campbell Scientific, 'TDR100 Instruction Manual', [ftp://ftp.campbellsci.com/pub/outgoing/manuals/tdr100.pdf]
  5. Chen, C. S., Roemer, L. E. and Grumbach, R. S. (1978), 'Cable diagnostics for power cables', IEEE Annual Conference of Electrical Eng. Problems in Rubber and Plastic Industries, 20-22, Apr.
  6. Chung, You Chung and etc. (2003), 'Non-destructive fault location on aging aircraft wiring networks Part 1-Cost-optimized solutions', IEEE AP-S and USNC/URSI National Radio Science Digest, Columbus, Ohio
  7. Chung, You Chung, Amamath, Nirmal and Furse, Cynthia, 'Capacitance and inductance sensors for open and short ends circuit wire faults detection', IEEE Trans. Instrument and Measurements, IM-8025, in review
  8. Chung, You Chung, Furse, Cynthia, Pruitt, Jeremy, (2005) 'Application of phase detection frequency domain reflectometry for locating faults in an F -18 flight control harness', IEEE Trans. Electromagnetic Compatibility, 47(2), 327-334 https://doi.org/10.1109/TEMC.2005.847403
  9. CM Technologies, http://www.ecadusa.com/prod01.htm
  10. Conley, Tim (2003), 'The relationship among component age, usage (reliability) and cost of naval aviation repairables', Aging Aircraft Conference 2003, New Orleans, Sep.
  11. DIT-MCO Model 2115-Benchtop. http://www.ditmco.com/wiring.asp?id=2
  12. Eclypse Co. SWR meter, http://www.eclypse.org/Home.htm
  13. Furse, C. and Kamdar, N. (2002), 'An inexpensive distance measuring system for navigation of robotic vehicle', Microwave and Optical Tech. Letters, 33(2). 84-97, April https://doi.org/10.1002/mop.10241
  14. Furse, C., Haupt, R. (2001), 'Down to the wire: The hidden hazard of aging aircraft wiring', IEEE Spectrum, 35-39, Feb.
  15. Furse, C., Smith, P., Safavi, M. and Lo, C. (2005), 'Feasibility of spread spectrum sensors for location of Arcs on live wires', IEEE Sensors J., 5(6), 1445-1450 https://doi.org/10.1109/JSEN.2005.858900
  16. Furse, Cynthia, Chung, You Chung, Dangol, Rakesh, Nielsen, Marc, Mabey, Glen, Woodward, Raymond, (2003), 'Frequency domain reflectometry for on board testing of aging aircraft wiring', IEEE Trans. Electromagnetic Compatibility, 306-315, May
  17. Furse, Cynthia, Lo, Chet, Chung, You Chung, Pendayala, Praveen and Nagoti, Kedamath (2005), 'Spread spectrum sensors for critical fault location on live wire networks', J. Struct. Control Health Monitoring, 12(3/4), 257-267 https://doi.org/10.1002/stc.69
  18. Green, E. (1999), 'A simplified derivation of the capacitance of a two-wire transmission line', IEEE Transactions on Microwave Theory and Techniques, 47(3), 365-366, Mar. https://doi.org/10.1109/22.750243
  19. Hayt, W. H. (1989), Engineering Electromagnetics, 5th edition, McGraw-Hill Book Co.
  20. Iskander, M. F., Electromagnetic Fields and Waves., Englewood Cliffs, NJ: Prentice Hall, 1992
  21. Jani, Alok (2003), 'Location of small frays using TDR,' MS Thesis, Utah State University, Logan. Utah, 2003
  22. Griffiths, Lance, Parakh, Rohit, Furse, Cynthia and Baker, Brittany (2005), 'The Invisible Fray: A critical analysis of the use of reflectomtry for Fray location', Accepted to IEEE J of Sensors
  23. Lloyd, Robin (1999a), '64 cases of wiring problems found on shuttle fleet', CNN Reports Sep. 3, http://www.cnn.com/TECH/space/9909/03/shuttle.repairs/
  24. Lloyd, Robin (1999b), 'NASA delays shuttle launch to inspect wiring', CNN Reports Aug. 13, http://www.cnn.com/TECH/space/9908/13/shuttle.update/
  25. Mackay, N. A. and Penstone, S. R. (1974), 'High-sensitivity narrow-band time-domain reflectometer', IEEE Trans. Instrumentation and Measurement, 23(2), 155-158, June https://doi.org/10.1109/TIM.1974.4314245
  26. Mahoney, Arthur, Lo, Chet, Chung, You Chung, and Furse, Cynthia, 'Use of genetic algorithms and reflectometry for identification of network topologies', IEEE Trans Electromagnetic Compatibility
  27. Medelius, P. J., Simson, H. J. (1999), 'Non-intrusive impedance-based cable tester', US Patent 5977773, Nov.
  28. NASA (2000), Wiring Integrity Research (WIRE) Pilot Study A0SP-001-XB1, August
  29. NSTC (2000), 'Review of federal programs for wire system safety', White House Report, Nov.
  30. Oppenheim, A. V. (1975), Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N.J.
  31. Pendayala, Praveen K. (2004), 'Development of algorithms for accurate wire fault location using spread spectrum reflectometry', MS Thesis, University of Utah
  32. Phoenix Aviation & Technology, http://tooling.tycoelectronics.com/pdflEmbedded.pdf
  33. Schmidt, Mark (2002), 'Use of TDR for cable testing', MS Thesis, Utah State University, Logan, Utah
  34. Smith, Paul (2003), 'Spread spectrum time domain reflectometry', Ph.D. dissertation, Utah State University
  35. Tsai, P., Lo, C; Chung, Y. C. and Furse, C. M. (2005), 'Mixed signal reflectometer for location of faults on aging wiring', IEEE Sensor Journal, 5(6), 1479-1482 https://doi.org/10.1109/JSEN.2005.858894
  36. Waddoups, Brent (2001), 'Analysis of reflectometry for detection of chafed aircraft wiring insulation', MS Thesis, Utah State University, Logan, Utah, (all theses and dissertations in this paper can be obtained from: www.lib.umi.com)
  37. Wadell, B. (1991), Transmission Line Design Handbook, Artech House, Norwood, MA
  38. White, Eddie (2004), Personal Communication, 4/13/2004
  39. 3M$^{TM}$ Advanced Systems Tester 900AST http://products3.3m.com/catalog/us/en001/govemment/gsa/node_ G4Q48DLDN3be/root_GS3RBW6QFVgv/vroot_GSL4YG63GRge/gvel_W4S 153Z2F4gl/theme_us_gsa_3_0/command_AbcPageHandler/output_html

Cited by

  1. Development of a Monitoring System for Multichannel Cables Using TDR vol.63, pp.8, 2014, https://doi.org/10.1109/TIM.2014.2304353
  2. Network fault breakpoints detection based on the auto-negotiation signal vol.30, pp.5, 2013, https://doi.org/10.3724/SP.J.1249.2013.05508
  3. Diagnosis of wiring networks using Particle Swarm Optimization and Genetic Algorithms vol.40, pp.7, 2014, https://doi.org/10.1016/j.compeleceng.2014.07.002
  4. Development of Coupler for Live Cable Fault Detection Based on Reflectometry vol.17, pp.9, 2016, https://doi.org/10.5762/KAIS.2016.17.9.401
  5. Detection and Location of Defects in Wiring Networks Using Time-Domain Reflectometry and Neural Networks vol.47, pp.5, 2011, https://doi.org/10.1109/TMAG.2010.2089503
  6. Quantifying Device Degradation in Live Power Converters Using SSTDR Assisted Impedance Matrix vol.29, pp.6, 2014, https://doi.org/10.1109/TPEL.2013.2273556
  7. A Noniterative Method for Locating Soft Faults in Complex Wire Networks vol.62, pp.3, 2013, https://doi.org/10.1109/TVT.2013.2237796
  8. Locating Wire Short Fault for In-Vehicle Controller Area Network with Resistance Estimation Approach vol.9, pp.1, 2016, https://doi.org/10.4271/2016-01-0065
  9. Physics-Based Precursor Wiring Diagnostics for Shielded-Twisted-Pair Cable vol.64, pp.2, 2015, https://doi.org/10.1109/TIM.2014.2347216
  10. Location of Wire Faults Using Chaotic Signal vol.32, pp.3, 2011, https://doi.org/10.1109/LED.2010.2097237
  11. Detection of Defects in Wiring Networks Using Time Domain Reflectometry vol.46, pp.8, 2010, https://doi.org/10.1109/TMAG.2010.2043720
  12. Research on Key Technologies of Detecting 1553B Avionics Data Bus Network vol.9, pp.3, 2013, https://doi.org/10.1016/j.dt.2013.09.019
  13. Experimental Validation of the Inverse Scattering Method for Distributed Characteristic Impedance Estimation vol.63, pp.6, 2015, https://doi.org/10.1109/TAP.2015.2417215
  14. Design and Construction of Test Field for Low Voltage Under Cable Fault Location Detection vol.16, pp.10, 2015, https://doi.org/10.5762/KAIS.2015.16.10.6666
  15. Intermittent Fault Location on Live Electrical Wiring Systems vol.1, pp.1, 2008, https://doi.org/10.4271/2008-01-2932
  16. Analysis of a capacitive sensor for the evaluation of circular cylinders with a conductive core vol.23, pp.4, 2012, https://doi.org/10.1088/0957-0233/23/4/045102
  17. Performance improvements of wire fault diagnosis approach based on time-domain reflectometry vol.11, pp.5, 2017, https://doi.org/10.1049/iet-smt.2016.0427
  18. On-site non-invasive condition assessment for cement mortar–lined metallic pipelines by time-domain fluid transient analysis vol.14, pp.5, 2015, https://doi.org/10.1177/1475921715591875
  19. Experimental Evaluation of the Inverse Scattering Method for Electrical Cable Fault Diagnosis vol.48, pp.21, 2015, https://doi.org/10.1016/j.ifacol.2015.09.619
  20. Diagnosis of Multi-Fault Wiring Network Using Time-Domain Reflectometry and Electromagnetism-Like Mechanism vol.33, pp.2, 2013, https://doi.org/10.1080/02726343.2013.756291
  21. Performance comparison of TDR-based systems for permanent and diffused detection of water content and leaks vol.28, pp.1, 2017, https://doi.org/10.1088/1361-6501/aa4e9b
  22. A New Algorithm for Wire Fault Location Using Time-Domain Reflectometry vol.14, pp.4, 2014, https://doi.org/10.1109/JSEN.2013.2294193
  23. Recent progress in wiring networks diagnosis for automotive applications vol.30, pp.4, 2011, https://doi.org/10.1108/03321641111133091
  24. Wiring fault detection with Boolean-chaos time-domain reflectometry vol.80, pp.1-2, 2015, https://doi.org/10.1007/s11071-014-1888-x
  25. No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research vol.123, 2014, https://doi.org/10.1016/j.ress.2013.10.013
  26. Statistical variation of wire parameters within complex aerospace networks vol.58, pp.9, 2016, https://doi.org/10.1002/mop.29983
  27. Detection and Location of Cable Fault Using Improved SSTDR vol.65, pp.9, 2016, https://doi.org/10.5370/KIEE.2016.65.9.1583
  28. Development of Portable Cable Fault Detection System with Automatic Fault Distinction and Distance Measurement vol.65, pp.10, 2016, https://doi.org/10.5370/KIEE.2016.65.10.1774
  29. Soft fault detection in cables using the cluster time-frequency domain reflectometry vol.2, pp.1, 2013, https://doi.org/10.1109/MEMC.2013.6512221
  30. Location of Wire Faults Using Chaotic Signal Generated by an Improved Colpitts Oscillator vol.24, pp.04, 2014, https://doi.org/10.1142/S0218127414500539
  31. Model-based identification of wire network topology vol.55, 2014, https://doi.org/10.1016/j.measurement.2014.05.008
  32. Wire Fault Location in Coaxial Cables by Impedance Spectroscopy vol.13, pp.11, 2013, https://doi.org/10.1109/JSEN.2013.2269218
  33. A capacitive probe for quantitative nondestructive evaluation of wiring insulation vol.52, 2012, https://doi.org/10.1016/j.ndteint.2012.08.010
  34. A Fault Diagnosis Scheme for Aircraft Multibranches Wiring Network Based on Matching Algorithm vol.11, pp.6, 2015, https://doi.org/10.1155/2015/158364
  35. Wire Fault Diagnosis in the Frequency Domain by Impedance Spectroscopy vol.64, pp.8, 2015, https://doi.org/10.1109/TIM.2014.2386918
  36. Connector impedance and frequency modes in aerospace wiring systems vol.59, pp.1, 2017, https://doi.org/10.1002/mop.30233
  37. Propagation measurement and statistical modeling for wireless sensor systems aboard helicopters vol.44, pp.4, 2008, https://doi.org/10.1109/TAES.2008.4667735
  38. An efficient technique based on DORT method to locate multiple soft faults in wiring networks vol.19, pp.4, 2016, https://doi.org/10.1109/MIM.2016.7524201
  39. Wiring Diagnostics Via $\ell_1$-Regularized Least Squares vol.10, pp.7, 2010, https://doi.org/10.1109/JSEN.2009.2037823
  40. A Model-Based Probabilistic Inversion Framework for Characterizing Wire Fault Detection Using TDR vol.60, pp.5, 2011, https://doi.org/10.1109/TIM.2011.2105030
  41. Locating Multiple Soft Faults in Wire Networks Using an Alternative DORT Implementation vol.65, pp.2, 2016, https://doi.org/10.1109/TIM.2015.2498559
  42. Non-destructive diagnosis of wiring networks using time domain reflectometry and an improved black hole algorithm vol.32, pp.3, 2017, https://doi.org/10.1080/10589759.2016.1200576
  43. Echo Response of Faults in Transmission Lines: Models and Limitations to Fault Detection vol.64, pp.12, 2016, https://doi.org/10.1109/TMTT.2016.2608774
  44. Distributed Reflectometry Method for Wire Fault Location Using Selective Average vol.10, pp.2, 2010, https://doi.org/10.1109/JSEN.2009.2033946
  45. Capacitance and Inductance Sensor Circuits for Detecting the Lengths of Open- and Short-Circuited Wires vol.58, pp.8, 2009, https://doi.org/10.1109/TIM.2009.2014617
  46. Fault Detection of Low Voltage Cable using Time-Frequency Correlation in SSTDR vol.64, pp.3, 2015, https://doi.org/10.5370/KIEE.2015.64.3.498
  47. A Statistical Study of DORT Method for Locating Soft Faults in Complex Wire Networks vol.54, pp.3, 2018, https://doi.org/10.1109/TMAG.2017.2765463
  48. Reflectometric System for Continuous and Automated Monitoring of Irrigation in Agriculture vol.2018, pp.2314-7539, 2018, https://doi.org/10.1155/2018/2849250
  49. An intelligent wire fault diagnosis approach using time domain reflectometry and pattern recognition network vol.34, pp.1, 2019, https://doi.org/10.1080/10589759.2018.1559312
  50. CHAOS TIME-DOMAIN REFLECTOMETRY FOR FAULT LOCATION ON LIVE WIRES vol.5, pp.2, 2006, https://doi.org/10.11948/2015022
  51. REFLECTOMETRY ON ASYMMETRIC TRANSMISSION LINE SYSTEMS vol.89, pp.None, 2006, https://doi.org/10.2528/pierm19110702
  52. Wiring networks diagnosis using time‐domain reflectometry and support vector machines vol.14, pp.2, 2020, https://doi.org/10.1049/iet-smt.2019.0122
  53. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations vol.3, pp.6, 2006, https://doi.org/10.1038/s41928-020-0415-y
  54. Liquid metal gives transmission lines a softer touch vol.3, pp.6, 2020, https://doi.org/10.1038/s41928-020-0431-y
  55. Identification and Localization of Track Circuit False Occupancy Failures Based on Frequency Domain Reflectometry vol.20, pp.24, 2006, https://doi.org/10.3390/s20247259
  56. A SSTDR Methodology, Implementations, and Challenges vol.21, pp.16, 2006, https://doi.org/10.3390/s21165268
  57. Localization of Disconnection Faults in PV Installations Using the Multiple Frequencies Injection Method vol.14, pp.21, 2006, https://doi.org/10.3390/en14217346
  58. Fault detection and location in power distribution systems: The usefulness of the HS-OFDM scheme for time-domain reflectometry vol.203, pp.None, 2006, https://doi.org/10.1016/j.epsr.2021.107600
  59. Analysis of typical PLC pulses for sensing high-impedance faults based on time-domain reflectometry vol.135, pp.None, 2006, https://doi.org/10.1016/j.ijepes.2021.107168