DOI QR코드

DOI QR Code

Cost optimization of composite floor trusses

  • Klansek, Uros (Faculty of Civil Engineering, University of Maribor) ;
  • Silih, Simon (Faculty of Civil Engineering, University of Maribor) ;
  • Kravanja, Stojan (Faculty of Civil Engineering, University of Maribor)
  • Received : 2005.05.24
  • Accepted : 2006.03.20
  • Published : 2006.10.25

Abstract

The paper presents the cost optimization of composite floor trusses composed from a reinforced concrete slab of constant depth and steel trusses consisting of hot rolled channel sections. The optimization was performed by the nonlinear programming approach, NLP. Accordingly, a NLP optimization model for composite floor trusses was developed. An accurate objective function of the manufacturing material, power and labour costs was proposed to be defined for the optimization. Alongside the costs, the objective function also considers the fabrication times, and the electrical power and material consumption. Composite trusses were optimized according to Eurocode 4 for the conditions of both the ultimate and the serviceability limit states. A numerical example of the optimization of the composite truss system presented at the end of the paper demonstrates the applicability of the proposed approach.

Keywords

References

  1. Adeli, H. and Kim, H. (2001), 'Cost optimization of welded of composite floors using neural dynamics model', Commun. Numer. Methods Eng., 17(11), 771-787 https://doi.org/10.1002/cnm.448
  2. Bhatti, M. A. and Al-Gahtani, A. S. (1995), 'Optimum design of welded plate girders subjected to highway bridge loading', Proc. of the 4th 1995 Int. Conf. on Computer Aided Optimum Design of Structures, OPTI 1995, Miami, September
  3. Bhatti, M. A. (1996), 'Optimum cost design of partially composite steel beams using LRFD', Eng. J., 33(1), 18-29
  4. British Standard BS 5950 (1990), Structural Use of Steelwork in Building, British Standards Institution, London
  5. Brooke, A., Kendrick, D. and Meeraus, A. (1988), GAMS - A User's Guide, Scientific Press, Redwood City, CA
  6. Bucar, G. (1999), Prirucnik za gradevinsko poduzetnistvo: Normativi gradevinskih radova (Handbook for building undertaking: The normative of building works). ICG, Omisalj. ISBN: 953-97875-0-5. (in Croatian)
  7. Cary, H. B. (1995), Arc Welding Automation, Marcel Dekker, New York
  8. Cary, H. B. (2002), Modern Welding Technology, Prentice-Hall, New Jersey
  9. Cohn, M. Z. and Werner, J. J. (1996), 'Optimization of composite highway bridge systems', Proc. of the 1996 12th Conf. on Analysis and Computation, Chicago, April
  10. Creese, R. C., Adithan, M. and Pabla, B. S. (1992), Estimating and Costing for the Metal Manufacturing Industries, Marcel Dekker, New York
  11. Drud, A. S. (1994), 'CONOPT - A Large-Scale GRG Code', ORSA J. Comput. (USA), 6(2), 207-216 https://doi.org/10.1287/ijoc.6.2.207
  12. El-Sheikh, A. I. (1999), 'Optimum design of composite space trusses', J. Int. Assoc. Shell Spatial Struct., 40(130), 79-92
  13. Eurocode 1 (1995), Basis of Design and Actions on Structures, European Committee for Standardization, Brussels
  14. Eurocode 2 (1992), Design of Concrete Structures, European Committee for Standardization, Brussels
  15. Eurocode 3 (1995), Design of Steel Structures, European Committee for Standardization, Brussels
  16. Eurocode 4 (1992), Design of Composite Structures, European Committee for Standardization, Brussels
  17. Foley, C. M. and Lucas, W. K. (2004), 'Optimal selection and design of composite steel floor systems considering vibration', Proc. of the 2004 Structures Congress-Building on the Past: Securing the Future, Nashville, May
  18. International Protective Coatings (2005), http://www.international-pc.com/pc/pds/the_uk.pdf
  19. Jarmai, K. and Farkas, J. (1999), 'Cost calculation and optimization of welded steel structures', J. Constr. Steel Res., 50(2), 115-135 https://doi.org/10.1016/S0143-974X(98)00241-7
  20. Jarmai, K. (2003), 'Design, fabrication and economy', European Integration Studies, Publication of the University of Miskolc, 2(1), 91-106
  21. Kravanja, S., Bedenik, B. S. and Krizanic, M. (1995), 'Flap gates at Bou Hanifia', Int. Water Power Dam Constr., 47(8), 30-32
  22. Kravanja, S., Kravanja, Z. and Bedenik, B. S. (1998), 'The MINLP optimization approach to structural synthesis. Part III: Synthesis of roller and sliding hydraulic steel gate structures', Int. J. Numer. Methods Eng., 43(2), 329-364 https://doi.org/10.1002/(SICI)1097-0207(19980930)43:2<329::AID-NME414>3.0.CO;2-7
  23. Kravanja, S. and Silih, S. (1999), 'The competitive spans of composite beams', Eurosteel '99: Proc. of the 2nd European Conf. on Steel Structures, Prague, May
  24. Kravanja, S. and Silih, S. (2001), 'The MINLP optimization of composite I-beams', Proc. of the Sixth Int. Conf. on Computer Aided Optimum Design of Structures, Bologna, May
  25. Kravanja, S. (2002), 'Optimization of the Sultartangi sliding gates in Iceland', Int. J. Hydropower Dams, 9(2), 42-45
  26. Kravanja, S. and Silih, S. (2003), 'Optimization based comparison between composite I beams and composite trusses', J. Constr. Steel Res., 59(5), 609-625 https://doi.org/10.1016/S0143-974X(02)00045-7
  27. Long, W., Troitsky, M. S. and Zielinski, Z. A. (1999), 'Optimum design of cable stayed bridges', Struct. Eng. Mech., 7(3), 241-257 https://doi.org/10.12989/sem.1999.7.3.241
  28. Stud Welding Associates (2005), http://www.studwelding.com/products/ati/procedures.asp
  29. Surtees, J. O. and Tordoff, D. (1977), 'Optimum design of composite box girder bridge structures', Proc. of the Institution of Civil Engineers (London), Part 1 - Design & Construction, London, March
  30. Silih, S. and Kravanja, S. (2000), 'Competitiveness of composite beams', Proc. of the Seventh Int. Conf. on Advances in Composite Materials and Structures CADCOMP VII, Bologna, September
  31. Silih, S. and Kravanja, S. (2002), 'Comparison of composite floor systems', Proc. of the First Int. Conf. on High Performance Structures and Composites, Sevilla, March
  32. Wolfram, S. (1991), Mathematica: A System for Doing Mathematics by Computer (2nd edn). Addison-Wesley, Redwood City, CA

Cited by

  1. Identification of critical points for the design and synthesis of flexible processes vol.32, pp.7, 2008, https://doi.org/10.1016/j.compchemeng.2007.08.003
  2. MINLP optimization of a composite I beam floor system vol.22, pp.5, 2006, https://doi.org/10.12989/scs.2016.22.5.1163
  3. Practical optimization of power transmission towers using the RBF-based ABC algorithm vol.73, pp.4, 2006, https://doi.org/10.12989/sem.2020.73.4.463