DOI QR코드

DOI QR Code

Free vibration analysis of composite conical shells using the discrete singular convolution algorithm

  • Civalek, Omer (Akdeniz University, Faculty of Engineering, Civil Engineering Department, Division of Mechanics)
  • 투고 : 2005.06.20
  • 심사 : 2006.02.03
  • 발행 : 2006.08.25

초록

The discrete singular convolution (DSC) algorithm for determining the frequencies of the free vibration of single isotropic and orthotropic laminated conical shells is developed by using a numerical solution of the governing differential equations of motion based on Love's first approximation thin shell theory. By applying the discrete singular convolution method, the free vibration equations of motion of the composite laminated conical shell are transformed to a set of algebraic equations. Convergence and comparison studies are carried out to check the validity and accuracy of the DSC method. The obtained results are in excellent agreement with those in the literature.

키워드

참고문헌

  1. Bacon, M. and Bert, C. W. (1967), 'Unsymmetric free vibrations of orthotropic Sandwich shells of revolution', AIAA J., 5, 413-417 https://doi.org/10.2514/3.3995
  2. Bert, C. W. and Francis, P. H. (1974), 'Composite material mechanics: structural mechanics', AIAA J., 12, 1173-1186 https://doi.org/10.2514/3.49450
  3. Chang, C. H. (1981), 'Vibration of conical shells', Shock and Vibration Digest, 13( 1), 9-17
  4. Civalek, O. (1998), Finite Element Analyses of Plates and Shells. Elazlg: Firat University, (in Turkish)
  5. Civalek, O. (2004), 'Geometrically non-linear static and dynamic analysis of plates and shells resting on elastic foundation by the method of polynomial differential quadrature (PDQ)', PhD. Thesis, Fyrat University, Elazlg (in Turkish)
  6. Hou, Y., Wei, G. W. and Xiang, Y. (2005), 'DSC-Ritz method for the free vibration analysis of Mindlin plates', Int. J. Numer. Meth. Engng, 62, 262-288 https://doi.org/10.1002/nme.1186
  7. Hu, X. X., Sakiyama, T., Matsuda, H. and Morita, C. (2002), 'Vibration analysis of rotating twisted and open conical shells', Int. J. Solids Struct., 39, 6121-6134 https://doi.org/10.1016/S0020-7683(02)00456-0
  8. Hua, L. (2000a), 'Frequency characteristics of a rotating truncated circular layered conical shell', Composite Structures, 50, 59-68 https://doi.org/10.1016/S0263-8223(00)00080-5
  9. Hua, L. (2000b), 'Frequency analysis of rotating truncated circular orthotropic conical shells with different boundary conditions', Composites Science and Technology, 60, 2945-2955 https://doi.org/10.1016/S0266-3538(00)00155-X
  10. Hua, L. and Lam, K. Y. (2000), 'The generalized differential quadrature method for frequency analysis of a rotating conical shell with initial pressure', Int. J Numer. Meth. Eng., 48, 1703-1722 https://doi.org/10.1002/1097-0207(20000830)48:12<1703::AID-NME961>3.0.CO;2-X
  11. Irie, T., Yamada, G. and Kaneko, Y. (1982), 'Free vibration of a conical shell with variable thickness', J Sound Vib., 82, 83-94 https://doi.org/10.1016/0022-460X(82)90544-2
  12. Irie, T., Yamada, G. and Tanaka, K. (1984), 'Natural frequencies of truncated conical shells', J Sound Vib., 92(3), 447-453 https://doi.org/10.1016/0022-460X(84)90391-2
  13. Kapania, R. K. (1989), 'A review on the analysis of laminated shells', Transactions of the ASME J Pressure Vessel Technology, 111, 88-96 https://doi.org/10.1115/1.3265662
  14. Lam, K. Y. and Hua, Li. (1997), 'Vibration analysis of rotating truncated circular conical shell', Int. J Solids Struct., 34(17), 2183-2197 https://doi.org/10.1016/S0020-7683(96)00100-X
  15. Lee, J. J., Yeom, C. H. and Lee, I. (2002), 'Vibration analysis of twisted cantievered conical composite shells', J Sound Vib., 255(5), 965-982 https://doi.org/10.1006/jsvi.2001.4207
  16. Leissa, A. W. (1973), Vibration of Shells, NASA, SP-288
  17. Liew, K. M. and Lim, C. W. (1994), 'Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness', AIAA J, 32(2), 387-396 https://doi.org/10.2514/3.59996
  18. Liew, K. M., Lim, M. K., Lim, C. W., Li, D. B. and Zhang, Y. R. (1995), 'Effects of initial twist and thickness variation on the vibration behaviour of shallow conical shells', J Sound Vib., 180(2), 272-296
  19. Liew, K. M., Ng, T. Y. and Zhao, X. (2005), 'Free vibration analysis of conical shells via the element-free kp-Ritz method', J. Sound Vib., 281(3-5), 627-645 https://doi.org/10.1016/j.jsv.2004.01.005
  20. Lim, C. W. and Kitipomchai, S. (1999), 'Effects of subtended and vertex angles on the free vibration of open conical shell panels: A conical co-ordinate approach', J Sound Vib., 219(5), 813-835 https://doi.org/10.1006/jsvi.1998.1890
  21. Lim, C. W., Li, Z. R. and Wei, G. W. (2005), 'DSC-Ritz method for high-mode frequency analysis of thick shallow shells', Int. J. Numer. Meth. Engng, 62, 205-232 https://doi.org/10.1002/nme.1179
  22. Lim, C. W., Liew, K. M. and Kitipomchai, S. (1995), 'Free vibration of pretwisted, cantilevered composite shallow conical', AIAA J, 35, 327-333 https://doi.org/10.2514/2.96
  23. Lim, C. W., Liew, K. M. and Kitipomchai, S. (1998), 'Vibration of cantilevered laminated composite shallow conical shells', Int. J Solids Struct., 35(15),1695-1707 https://doi.org/10.1016/S0020-7683(97)00157-1
  24. Love, A. E. H. (1888), 'On the small free vibrations and deformations of thin elastic shells', Phil. Trans. Roy. Soc., London, 179A, 491-546
  25. Markus, S. (1988), The Mechanics of Vibrations of Cylindrical Shells, Elsevier, New York
  26. Ng, C. H. W., Zhao, Y. B. and Wei, G. W. (2004), 'Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates', Com put. Methods Appl. Mech. Engng, 193, 2483-2506 https://doi.org/10.1016/j.cma.2004.01.013
  27. Reddy, J. N. (1996), Mechanics of Composite Plates and Shells, Theory and Analysis, Boca Raton FL: CRC Press
  28. Shu, C. (1996a), 'Free vibration analysis of composite laminated conical shells by generalized differential quadrature', J. Sound Vib., 194(4), 587-604 https://doi.org/10.1006/jsvi.1996.0379
  29. Shu, C. (1996b), 'An efficient approach for free vibration analysis of conical shells', Int. J. Mech. Sci. 38(8/9), 935-949 https://doi.org/10.1016/0020-7403(95)00096-8
  30. Shu, C. and Du, H. (1997), 'Free vibration analysis of laminated composite cylindrical shells by DQM', Composites Part B, 28, 267-274 https://doi.org/10.1016/S1359-8368(96)00052-2
  31. Siu, C. C. and Bert, C. W. (1970), 'Free vibrational analysis of sandwich conical shells with free edges', J. of the Acoustical Society of America, 47, 943-945 https://doi.org/10.1121/1.1911985
  32. Sivadas, K. R. and Ganesan, N. (1992), 'Vibration analysis of thick composite clamped conical shells with variable thickness', J. Sound Vib., 152, 27-37 https://doi.org/10.1016/0022-460X(92)90063-4
  33. Soedel, W. (1996), Vibrations of Shells and Plates, Second Edition, Revised and Expanded, Marcal Dekker, Inc., New York
  34. Tong, L. (1993a), 'Free vibration of orthotropic conical shells', Int. J Eng. Sci., 31(5), 719-733 https://doi.org/10.1016/0020-7225(93)90120-J
  35. Tong, L. (1993b), 'Free vibration of composite laminated conical shells', Int. J Mech. Sci., 35(1), 47-61 https://doi.org/10.1016/0020-7403(93)90064-2
  36. Tong, L. and Wang, T. K. (1992), 'Simple solutions for buckling of laminated conical shells', Int. J. Mech. Sci., 34(2), 93-111 https://doi.org/10.1016/0020-7403(92)90076-S
  37. Wan, D. C., Zhou, Y. C. and Wei, G. W. (2002), 'Numerical solution of unsteady incompressible flows by the discrete singular convolution', Int. J. Numer. Methods Fluid, 38, 789-810 https://doi.org/10.1002/fld.253
  38. Wang, Y, Liu, R. and Wang, X. (1999), 'Free vibration analysis of truncated conical shells by the differential quadrature method', J. Sound Vib., 224(2), 387-394 https://doi.org/10.1006/jsvi.1999.2218
  39. Wei, G. W. (1999), 'Discrete singular convolution for the solution of the Fokker-Planck equations', J Chem. Phys., 110, 8930-8942 https://doi.org/10.1063/1.478812
  40. Wei, G. W. (2000), 'Discrete singular convolution for the sine-Gordon equation', Physica D, 137, 247-259 https://doi.org/10.1016/S0167-2789(99)00186-4
  41. Wei, G. W. (2001a), 'A new algorithm for solving some mechanical problems', Comput. Methods Appl. Mech. Engng, 190, 2017-2030 https://doi.org/10.1016/S0045-7825(00)00219-X
  42. Wei, G. W. (2001b), 'Vibration analysis by discrete singular convolution', J Sound Vib., 244, 535-553 https://doi.org/10.1006/jsvi.2000.3507
  43. Wei, G. W. (2001c), 'Discrete singular convolution for beam analysis', Eng. Struct., 23, 1045-1053 https://doi.org/10.1016/S0141-0296(01)00016-5
  44. Wei, G. W., Zhou Y. C. and Xiang, Y. (2002a), 'Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm', Int. J. Numer. Methods Eng., 55, 913-946 https://doi.org/10.1002/nme.526
  45. Wei, G. W., Zhou Y. C. and Xiang, Y. (2002b), 'A novel approach for the analysis of high-frequency vibrations', J. Sound Vib., 257(2), 207-246 https://doi.org/10.1006/jsvi.2002.5055
  46. Wei, G. W., Zhou, Y. C. and Xiang, Y. (2001), 'The determination of natural frequencies of rectangular plates with mixed boundry conditions by discrete singular convolution', Int. J. Mech. Sci., 43, 1731-1746 https://doi.org/10.1016/S0020-7403(01)00021-2
  47. Wu, C.-P. and Wu, C.-H. (2000), 'Asymptotic differential quadrature solutions for the free vibration of laminated conical shells', Com put. Mech., 25, 346-357 https://doi.org/10.1007/s004660050482
  48. Wu, C.-P., Pu, Y.-F. and Tsai, Y.-H. (2005), 'Asymptotic solutions of axisymmetric laminated conical shells', Thin-Walled Struct., 43(10), 1589-1614 https://doi.org/10.1016/j.tws.2005.06.002
  49. Yang, C. C. (1974), 'On vibrations of orthotropic conical shells', J. Sound Vib., 34, 552-555 https://doi.org/10.1016/S0022-460X(74)80182-3
  50. Zhao, Y. B., Wei, G. W. and Xiang, Y. (2002a), 'Discrete singular convolution for the prediction of high frequency vibration of plates', Int. J. Solids Struct., 39, 65-88 https://doi.org/10.1016/S0020-7683(01)00183-4
  51. Zhao, Y. B., Wei, G. W. and Xiang, Y. (2002b), 'Plate vibration under irregular internal supports', Int. J. Solids Struct., 39, 1361-1383 https://doi.org/10.1016/S0020-7683(01)00241-4
  52. Zhou, Y. C. and Wei, G. W. (2002), 'DSC analysis of rectangular plates with non-uniform boundary conditions', J. Sound Vib., 55(2), 203-228

피인용 문헌

  1. Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method vol.33, pp.10, 2009, https://doi.org/10.1016/j.apm.2008.12.019
  2. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations vol.84, pp.9, 2007, https://doi.org/10.1016/j.ijpvp.2007.07.001
  3. Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells vol.47, 2015, https://doi.org/10.1016/j.ast.2015.09.011
  4. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique vol.3, pp.1, 2016, https://doi.org/10.1515/cls-2016-0007
  5. Frequency analysis of moderately thick uniform isotropic annular plates by discrete singular convolution method vol.29, pp.4, 2008, https://doi.org/10.12989/sem.2008.29.4.411
  6. Buckling analysis of composite panels and shells with different material properties by discrete singular convolution (DSC) method vol.161, 2017, https://doi.org/10.1016/j.compstruct.2016.10.077
  7. FREE VIBRATION OF KIRCHHOFF PLATES WITH SECTOR SHAPES BY THE METHOD OF DISCRETE SINGULAR CONVOLUTION vol.07, pp.02, 2010, https://doi.org/10.1142/S0219876210002192
  8. Recent research advances on the dynamic analysis of composite shells: 2000–2009 vol.93, pp.1, 2010, https://doi.org/10.1016/j.compstruct.2010.05.014
  9. Rapid heating induced vibration of circular cylindrical shells with magnetostrictive functionally graded material vol.14, pp.4, 2014, https://doi.org/10.1016/j.acme.2013.10.012
  10. Analysis of Thick Rectangular Plates with Symmetric Cross-ply Laminates Based on First-order Shear Deformation Theory vol.42, pp.26, 2008, https://doi.org/10.1177/0021998308096952
  11. Static analysis of laminated conical shells by Discrete Singular Convolution (DSC) approach vol.18, pp.5, 2014, https://doi.org/10.1007/s12205-014-0314-8
  12. Three-dimensional Elasticity Analysis of Rectangular Composite Plates vol.44, pp.17, 2010, https://doi.org/10.1177/0021998310369600
  13. Elastic buckling behavior of skew shaped single-layer graphene sheets vol.550, 2014, https://doi.org/10.1016/j.tsf.2013.10.021
  14. Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges vol.41, pp.4, 2010, https://doi.org/10.1016/j.advengsoft.2009.11.002
  15. Numerical Analysis of Free Longitudinal Vibration of Nonuniform Rods: Discrete Singular Convolution Approach vol.140, pp.8, 2014, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000772
  16. Non-linear dynamic analysis of symmetric and antisymmetric cross-ply laminated orthotropic thin shells vol.49, pp.2, 2014, https://doi.org/10.1007/s11012-013-9802-z
  17. Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method vol.186, 2018, https://doi.org/10.1016/j.compstruct.2017.12.008
  18. Buckling Analysis of Symmetric Laminated Composite Plates by Using Discrete Singular Convolution vol.2, pp.6, 2007, https://doi.org/10.3923/tasr.2007.460.471
  19. Free vibration and bending analysis of circular Mindlin plates using singular convolution method vol.25, pp.8, 2009, https://doi.org/10.1002/cnm.1138
  20. DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix vol.143, 2016, https://doi.org/10.1016/j.compstruct.2016.02.040
  21. Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method vol.44, pp.12-13, 2008, https://doi.org/10.1016/j.finel.2008.04.001
  22. Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory vol.79, pp.3, 2009, https://doi.org/10.1002/nme.2553
  23. Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel vol.94, 2016, https://doi.org/10.1016/j.compositesb.2016.03.031
  24. Free vibration analysis of annular sector plates via conical shell equations vol.4, pp.1, 2017, https://doi.org/10.1515/cls-2017-0011
  25. Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods vol.183, 2018, https://doi.org/10.1016/j.compstruct.2016.11.051
  26. A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution vol.45, pp.7-8, 2007, https://doi.org/10.1016/j.tws.2007.05.004
  27. Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique vol.86, pp.10, 2009, https://doi.org/10.1016/j.ijpvp.2009.03.011
  28. A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates vol.33, pp.1, 2009, https://doi.org/10.1016/j.apm.2007.11.003
  29. Determination of the excitation frequencies of laminated orthotropic non-homogeneous conical shells vol.132, 2018, https://doi.org/10.1016/j.compositesb.2017.08.013
  30. DISCRETE SINGULAR CONVOLUTION (DSC) FOR FREE VIBRATION ANALYSIS OF CONICAL SHELLS WITH VARIOUS BOUNDARY CONDITIONS vol.04, pp.01, 2007, https://doi.org/10.1142/S0219876207000959
  31. Discrete singular convolution methodology for free vibration and stability analyses of arbitrary straight-sided quadrilateral plates vol.24, pp.11, 2008, https://doi.org/10.1002/cnm.1046
  32. Discrete singular convolution method for the free vibration analysis of rotating shells with different material properties vol.160, 2017, https://doi.org/10.1016/j.compstruct.2016.10.031
  33. Vibration of laminated composite panels and curved plates with different types of FGM composite constituent vol.122, 2017, https://doi.org/10.1016/j.compositesb.2017.04.012
  34. NUMERICAL SOLUTIONS TO THE FREE VIBRATION PROBLEM OF MINDLIN SECTOR PLATES USING THE DISCRETE SINGULAR CONVOLUTION METHOD vol.09, pp.02, 2009, https://doi.org/10.1142/S0219455409003028
  35. Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches vol.50, 2013, https://doi.org/10.1016/j.compositesb.2013.01.027
  36. Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution vol.88, pp.8-9, 2011, https://doi.org/10.1016/j.ijpvp.2011.06.004
  37. Eigenvalues of membranes having skew and rhombic geometry using discrete singular convolution algorithm vol.14, pp.11, 2009, https://doi.org/10.1016/j.cnsns.2008.08.010
  38. Static and dynamic response of sector-shaped graphene sheets vol.23, pp.4, 2016, https://doi.org/10.1080/15376494.2014.984089
  39. Use of Eight-node Curvilinear Domains in Discrete Singular Convolution Method for Free Vibration Analysis of Annular Sector Plates with Simply Supported Radial Edges vol.16, pp.2, 2010, https://doi.org/10.1177/1077546309104190
  40. Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations vol.113, 2014, https://doi.org/10.1016/j.ijpvp.2013.10.014
  41. Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.889
  42. Discrete singular convolution element method for static, buckling and free vibration analysis of beam structures vol.234, 2014, https://doi.org/10.1016/j.amc.2014.01.165
  43. Vibration analysis of conical panels using the method of discrete singular convolution vol.24, pp.3, 2006, https://doi.org/10.1002/cnm.961
  44. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method vol.111, 2017, https://doi.org/10.1016/j.compositesb.2016.11.030
  45. Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometric transformation vol.9, pp.1, 2006, https://doi.org/10.12989/scs.2009.9.1.059
  46. Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation vol.2, pp.1, 2006, https://doi.org/10.12989/gae.2010.2.1.045
  47. Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs vol.24, pp.2, 2006, https://doi.org/10.12989/scs.2017.24.2.249
  48. Numerical approaches for vibration response of annular and circular composite plates vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.759
  49. Multipulse Homoclinic Orbits and Chaotic Dynamics of a Reinforced Composite Plate with Carbon Nanotubes vol.2020, pp.None, 2006, https://doi.org/10.1155/2020/7310187
  50. Vibration Analysis of Piezoelectric Composite Plate Resting on Nonlinear Elastic Foundations Using Sinc and Discrete Singular Convolution Differential Quadrature Techniques vol.2020, pp.None, 2006, https://doi.org/10.1155/2020/7592302
  51. Vibration of angle-ply laminated composite circular and annular plates vol.34, pp.1, 2020, https://doi.org/10.12989/scs.2020.34.1.141
  52. Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect vol.34, pp.2, 2006, https://doi.org/10.12989/scs.2020.34.2.279
  53. Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure vol.74, pp.2, 2006, https://doi.org/10.12989/sem.2020.74.2.297
  54. Free vibration of FG-GPLRC conical panel on elastic foundation vol.75, pp.1, 2020, https://doi.org/10.12989/sem.2020.75.1.001
  55. Vibration control of laminated truncated conical shell via magnetostrictive layers vol.27, pp.20, 2006, https://doi.org/10.1080/15376494.2018.1525627
  56. A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2006, https://doi.org/10.1007/s11831-019-09365-5
  57. The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047