References
- Bacon, M. and Bert, C. W. (1967), 'Unsymmetric free vibrations of orthotropic Sandwich shells of revolution', AIAA J., 5, 413-417 https://doi.org/10.2514/3.3995
- Bert, C. W. and Francis, P. H. (1974), 'Composite material mechanics: structural mechanics', AIAA J., 12, 1173-1186 https://doi.org/10.2514/3.49450
- Chang, C. H. (1981), 'Vibration of conical shells', Shock and Vibration Digest, 13( 1), 9-17
- Civalek, O. (1998), Finite Element Analyses of Plates and Shells. Elazlg: Firat University, (in Turkish)
- Civalek, O. (2004), 'Geometrically non-linear static and dynamic analysis of plates and shells resting on elastic foundation by the method of polynomial differential quadrature (PDQ)', PhD. Thesis, Fyrat University, Elazlg (in Turkish)
- Hou, Y., Wei, G. W. and Xiang, Y. (2005), 'DSC-Ritz method for the free vibration analysis of Mindlin plates', Int. J. Numer. Meth. Engng, 62, 262-288 https://doi.org/10.1002/nme.1186
- Hu, X. X., Sakiyama, T., Matsuda, H. and Morita, C. (2002), 'Vibration analysis of rotating twisted and open conical shells', Int. J. Solids Struct., 39, 6121-6134 https://doi.org/10.1016/S0020-7683(02)00456-0
- Hua, L. (2000a), 'Frequency characteristics of a rotating truncated circular layered conical shell', Composite Structures, 50, 59-68 https://doi.org/10.1016/S0263-8223(00)00080-5
- Hua, L. (2000b), 'Frequency analysis of rotating truncated circular orthotropic conical shells with different boundary conditions', Composites Science and Technology, 60, 2945-2955 https://doi.org/10.1016/S0266-3538(00)00155-X
- Hua, L. and Lam, K. Y. (2000), 'The generalized differential quadrature method for frequency analysis of a rotating conical shell with initial pressure', Int. J Numer. Meth. Eng., 48, 1703-1722 https://doi.org/10.1002/1097-0207(20000830)48:12<1703::AID-NME961>3.0.CO;2-X
- Irie, T., Yamada, G. and Kaneko, Y. (1982), 'Free vibration of a conical shell with variable thickness', J Sound Vib., 82, 83-94 https://doi.org/10.1016/0022-460X(82)90544-2
- Irie, T., Yamada, G. and Tanaka, K. (1984), 'Natural frequencies of truncated conical shells', J Sound Vib., 92(3), 447-453 https://doi.org/10.1016/0022-460X(84)90391-2
- Kapania, R. K. (1989), 'A review on the analysis of laminated shells', Transactions of the ASME J Pressure Vessel Technology, 111, 88-96 https://doi.org/10.1115/1.3265662
- Lam, K. Y. and Hua, Li. (1997), 'Vibration analysis of rotating truncated circular conical shell', Int. J Solids Struct., 34(17), 2183-2197 https://doi.org/10.1016/S0020-7683(96)00100-X
- Lee, J. J., Yeom, C. H. and Lee, I. (2002), 'Vibration analysis of twisted cantievered conical composite shells', J Sound Vib., 255(5), 965-982 https://doi.org/10.1006/jsvi.2001.4207
- Leissa, A. W. (1973), Vibration of Shells, NASA, SP-288
- Liew, K. M. and Lim, C. W. (1994), 'Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness', AIAA J, 32(2), 387-396 https://doi.org/10.2514/3.59996
- Liew, K. M., Lim, M. K., Lim, C. W., Li, D. B. and Zhang, Y. R. (1995), 'Effects of initial twist and thickness variation on the vibration behaviour of shallow conical shells', J Sound Vib., 180(2), 272-296
- Liew, K. M., Ng, T. Y. and Zhao, X. (2005), 'Free vibration analysis of conical shells via the element-free kp-Ritz method', J. Sound Vib., 281(3-5), 627-645 https://doi.org/10.1016/j.jsv.2004.01.005
- Lim, C. W. and Kitipomchai, S. (1999), 'Effects of subtended and vertex angles on the free vibration of open conical shell panels: A conical co-ordinate approach', J Sound Vib., 219(5), 813-835 https://doi.org/10.1006/jsvi.1998.1890
- Lim, C. W., Li, Z. R. and Wei, G. W. (2005), 'DSC-Ritz method for high-mode frequency analysis of thick shallow shells', Int. J. Numer. Meth. Engng, 62, 205-232 https://doi.org/10.1002/nme.1179
- Lim, C. W., Liew, K. M. and Kitipomchai, S. (1995), 'Free vibration of pretwisted, cantilevered composite shallow conical', AIAA J, 35, 327-333 https://doi.org/10.2514/2.96
- Lim, C. W., Liew, K. M. and Kitipomchai, S. (1998), 'Vibration of cantilevered laminated composite shallow conical shells', Int. J Solids Struct., 35(15),1695-1707 https://doi.org/10.1016/S0020-7683(97)00157-1
- Love, A. E. H. (1888), 'On the small free vibrations and deformations of thin elastic shells', Phil. Trans. Roy. Soc., London, 179A, 491-546
- Markus, S. (1988), The Mechanics of Vibrations of Cylindrical Shells, Elsevier, New York
- Ng, C. H. W., Zhao, Y. B. and Wei, G. W. (2004), 'Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates', Com put. Methods Appl. Mech. Engng, 193, 2483-2506 https://doi.org/10.1016/j.cma.2004.01.013
- Reddy, J. N. (1996), Mechanics of Composite Plates and Shells, Theory and Analysis, Boca Raton FL: CRC Press
- Shu, C. (1996a), 'Free vibration analysis of composite laminated conical shells by generalized differential quadrature', J. Sound Vib., 194(4), 587-604 https://doi.org/10.1006/jsvi.1996.0379
- Shu, C. (1996b), 'An efficient approach for free vibration analysis of conical shells', Int. J. Mech. Sci. 38(8/9), 935-949 https://doi.org/10.1016/0020-7403(95)00096-8
- Shu, C. and Du, H. (1997), 'Free vibration analysis of laminated composite cylindrical shells by DQM', Composites Part B, 28, 267-274 https://doi.org/10.1016/S1359-8368(96)00052-2
- Siu, C. C. and Bert, C. W. (1970), 'Free vibrational analysis of sandwich conical shells with free edges', J. of the Acoustical Society of America, 47, 943-945 https://doi.org/10.1121/1.1911985
- Sivadas, K. R. and Ganesan, N. (1992), 'Vibration analysis of thick composite clamped conical shells with variable thickness', J. Sound Vib., 152, 27-37 https://doi.org/10.1016/0022-460X(92)90063-4
- Soedel, W. (1996), Vibrations of Shells and Plates, Second Edition, Revised and Expanded, Marcal Dekker, Inc., New York
- Tong, L. (1993a), 'Free vibration of orthotropic conical shells', Int. J Eng. Sci., 31(5), 719-733 https://doi.org/10.1016/0020-7225(93)90120-J
- Tong, L. (1993b), 'Free vibration of composite laminated conical shells', Int. J Mech. Sci., 35(1), 47-61 https://doi.org/10.1016/0020-7403(93)90064-2
- Tong, L. and Wang, T. K. (1992), 'Simple solutions for buckling of laminated conical shells', Int. J. Mech. Sci., 34(2), 93-111 https://doi.org/10.1016/0020-7403(92)90076-S
- Wan, D. C., Zhou, Y. C. and Wei, G. W. (2002), 'Numerical solution of unsteady incompressible flows by the discrete singular convolution', Int. J. Numer. Methods Fluid, 38, 789-810 https://doi.org/10.1002/fld.253
- Wang, Y, Liu, R. and Wang, X. (1999), 'Free vibration analysis of truncated conical shells by the differential quadrature method', J. Sound Vib., 224(2), 387-394 https://doi.org/10.1006/jsvi.1999.2218
- Wei, G. W. (1999), 'Discrete singular convolution for the solution of the Fokker-Planck equations', J Chem. Phys., 110, 8930-8942 https://doi.org/10.1063/1.478812
- Wei, G. W. (2000), 'Discrete singular convolution for the sine-Gordon equation', Physica D, 137, 247-259 https://doi.org/10.1016/S0167-2789(99)00186-4
- Wei, G. W. (2001a), 'A new algorithm for solving some mechanical problems', Comput. Methods Appl. Mech. Engng, 190, 2017-2030 https://doi.org/10.1016/S0045-7825(00)00219-X
- Wei, G. W. (2001b), 'Vibration analysis by discrete singular convolution', J Sound Vib., 244, 535-553 https://doi.org/10.1006/jsvi.2000.3507
- Wei, G. W. (2001c), 'Discrete singular convolution for beam analysis', Eng. Struct., 23, 1045-1053 https://doi.org/10.1016/S0141-0296(01)00016-5
- Wei, G. W., Zhou Y. C. and Xiang, Y. (2002a), 'Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm', Int. J. Numer. Methods Eng., 55, 913-946 https://doi.org/10.1002/nme.526
- Wei, G. W., Zhou Y. C. and Xiang, Y. (2002b), 'A novel approach for the analysis of high-frequency vibrations', J. Sound Vib., 257(2), 207-246 https://doi.org/10.1006/jsvi.2002.5055
- Wei, G. W., Zhou, Y. C. and Xiang, Y. (2001), 'The determination of natural frequencies of rectangular plates with mixed boundry conditions by discrete singular convolution', Int. J. Mech. Sci., 43, 1731-1746 https://doi.org/10.1016/S0020-7403(01)00021-2
- Wu, C.-P. and Wu, C.-H. (2000), 'Asymptotic differential quadrature solutions for the free vibration of laminated conical shells', Com put. Mech., 25, 346-357 https://doi.org/10.1007/s004660050482
- Wu, C.-P., Pu, Y.-F. and Tsai, Y.-H. (2005), 'Asymptotic solutions of axisymmetric laminated conical shells', Thin-Walled Struct., 43(10), 1589-1614 https://doi.org/10.1016/j.tws.2005.06.002
- Yang, C. C. (1974), 'On vibrations of orthotropic conical shells', J. Sound Vib., 34, 552-555 https://doi.org/10.1016/S0022-460X(74)80182-3
- Zhao, Y. B., Wei, G. W. and Xiang, Y. (2002a), 'Discrete singular convolution for the prediction of high frequency vibration of plates', Int. J. Solids Struct., 39, 65-88 https://doi.org/10.1016/S0020-7683(01)00183-4
- Zhao, Y. B., Wei, G. W. and Xiang, Y. (2002b), 'Plate vibration under irregular internal supports', Int. J. Solids Struct., 39, 1361-1383 https://doi.org/10.1016/S0020-7683(01)00241-4
- Zhou, Y. C. and Wei, G. W. (2002), 'DSC analysis of rectangular plates with non-uniform boundary conditions', J. Sound Vib., 55(2), 203-228
Cited by
- Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method vol.33, pp.10, 2009, https://doi.org/10.1016/j.apm.2008.12.019
- Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations vol.84, pp.9, 2007, https://doi.org/10.1016/j.ijpvp.2007.07.001
- Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells vol.47, 2015, https://doi.org/10.1016/j.ast.2015.09.011
- Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique vol.3, pp.1, 2016, https://doi.org/10.1515/cls-2016-0007
- Frequency analysis of moderately thick uniform isotropic annular plates by discrete singular convolution method vol.29, pp.4, 2008, https://doi.org/10.12989/sem.2008.29.4.411
- Buckling analysis of composite panels and shells with different material properties by discrete singular convolution (DSC) method vol.161, 2017, https://doi.org/10.1016/j.compstruct.2016.10.077
- FREE VIBRATION OF KIRCHHOFF PLATES WITH SECTOR SHAPES BY THE METHOD OF DISCRETE SINGULAR CONVOLUTION vol.07, pp.02, 2010, https://doi.org/10.1142/S0219876210002192
- Recent research advances on the dynamic analysis of composite shells: 2000–2009 vol.93, pp.1, 2010, https://doi.org/10.1016/j.compstruct.2010.05.014
- Rapid heating induced vibration of circular cylindrical shells with magnetostrictive functionally graded material vol.14, pp.4, 2014, https://doi.org/10.1016/j.acme.2013.10.012
- Analysis of Thick Rectangular Plates with Symmetric Cross-ply Laminates Based on First-order Shear Deformation Theory vol.42, pp.26, 2008, https://doi.org/10.1177/0021998308096952
- Static analysis of laminated conical shells by Discrete Singular Convolution (DSC) approach vol.18, pp.5, 2014, https://doi.org/10.1007/s12205-014-0314-8
- Three-dimensional Elasticity Analysis of Rectangular Composite Plates vol.44, pp.17, 2010, https://doi.org/10.1177/0021998310369600
- Elastic buckling behavior of skew shaped single-layer graphene sheets vol.550, 2014, https://doi.org/10.1016/j.tsf.2013.10.021
- Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges vol.41, pp.4, 2010, https://doi.org/10.1016/j.advengsoft.2009.11.002
- Numerical Analysis of Free Longitudinal Vibration of Nonuniform Rods: Discrete Singular Convolution Approach vol.140, pp.8, 2014, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000772
- Non-linear dynamic analysis of symmetric and antisymmetric cross-ply laminated orthotropic thin shells vol.49, pp.2, 2014, https://doi.org/10.1007/s11012-013-9802-z
- Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method vol.186, 2018, https://doi.org/10.1016/j.compstruct.2017.12.008
- Buckling Analysis of Symmetric Laminated Composite Plates by Using Discrete Singular Convolution vol.2, pp.6, 2007, https://doi.org/10.3923/tasr.2007.460.471
- Free vibration and bending analysis of circular Mindlin plates using singular convolution method vol.25, pp.8, 2009, https://doi.org/10.1002/cnm.1138
- DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix vol.143, 2016, https://doi.org/10.1016/j.compstruct.2016.02.040
- Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method vol.44, pp.12-13, 2008, https://doi.org/10.1016/j.finel.2008.04.001
- Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory vol.79, pp.3, 2009, https://doi.org/10.1002/nme.2553
- Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel vol.94, 2016, https://doi.org/10.1016/j.compositesb.2016.03.031
- Free vibration analysis of annular sector plates via conical shell equations vol.4, pp.1, 2017, https://doi.org/10.1515/cls-2017-0011
- Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods vol.183, 2018, https://doi.org/10.1016/j.compstruct.2016.11.051
- A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution vol.45, pp.7-8, 2007, https://doi.org/10.1016/j.tws.2007.05.004
- Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique vol.86, pp.10, 2009, https://doi.org/10.1016/j.ijpvp.2009.03.011
- A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates vol.33, pp.1, 2009, https://doi.org/10.1016/j.apm.2007.11.003
- Determination of the excitation frequencies of laminated orthotropic non-homogeneous conical shells vol.132, 2018, https://doi.org/10.1016/j.compositesb.2017.08.013
- DISCRETE SINGULAR CONVOLUTION (DSC) FOR FREE VIBRATION ANALYSIS OF CONICAL SHELLS WITH VARIOUS BOUNDARY CONDITIONS vol.04, pp.01, 2007, https://doi.org/10.1142/S0219876207000959
- Discrete singular convolution methodology for free vibration and stability analyses of arbitrary straight-sided quadrilateral plates vol.24, pp.11, 2008, https://doi.org/10.1002/cnm.1046
- Discrete singular convolution method for the free vibration analysis of rotating shells with different material properties vol.160, 2017, https://doi.org/10.1016/j.compstruct.2016.10.031
- Vibration of laminated composite panels and curved plates with different types of FGM composite constituent vol.122, 2017, https://doi.org/10.1016/j.compositesb.2017.04.012
- NUMERICAL SOLUTIONS TO THE FREE VIBRATION PROBLEM OF MINDLIN SECTOR PLATES USING THE DISCRETE SINGULAR CONVOLUTION METHOD vol.09, pp.02, 2009, https://doi.org/10.1142/S0219455409003028
- Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches vol.50, 2013, https://doi.org/10.1016/j.compositesb.2013.01.027
- Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution vol.88, pp.8-9, 2011, https://doi.org/10.1016/j.ijpvp.2011.06.004
- Eigenvalues of membranes having skew and rhombic geometry using discrete singular convolution algorithm vol.14, pp.11, 2009, https://doi.org/10.1016/j.cnsns.2008.08.010
- Static and dynamic response of sector-shaped graphene sheets vol.23, pp.4, 2016, https://doi.org/10.1080/15376494.2014.984089
- Use of Eight-node Curvilinear Domains in Discrete Singular Convolution Method for Free Vibration Analysis of Annular Sector Plates with Simply Supported Radial Edges vol.16, pp.2, 2010, https://doi.org/10.1177/1077546309104190
- Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations vol.113, 2014, https://doi.org/10.1016/j.ijpvp.2013.10.014
- Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.889
- Discrete singular convolution element method for static, buckling and free vibration analysis of beam structures vol.234, 2014, https://doi.org/10.1016/j.amc.2014.01.165
- Vibration analysis of conical panels using the method of discrete singular convolution vol.24, pp.3, 2006, https://doi.org/10.1002/cnm.961
- Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method vol.111, 2017, https://doi.org/10.1016/j.compositesb.2016.11.030
- Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometric transformation vol.9, pp.1, 2006, https://doi.org/10.12989/scs.2009.9.1.059
- Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation vol.2, pp.1, 2006, https://doi.org/10.12989/gae.2010.2.1.045
- Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs vol.24, pp.2, 2006, https://doi.org/10.12989/scs.2017.24.2.249
- Numerical approaches for vibration response of annular and circular composite plates vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.759
- Multipulse Homoclinic Orbits and Chaotic Dynamics of a Reinforced Composite Plate with Carbon Nanotubes vol.2020, pp.None, 2006, https://doi.org/10.1155/2020/7310187
- Vibration Analysis of Piezoelectric Composite Plate Resting on Nonlinear Elastic Foundations Using Sinc and Discrete Singular Convolution Differential Quadrature Techniques vol.2020, pp.None, 2006, https://doi.org/10.1155/2020/7592302
- Vibration of angle-ply laminated composite circular and annular plates vol.34, pp.1, 2020, https://doi.org/10.12989/scs.2020.34.1.141
- Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect vol.34, pp.2, 2006, https://doi.org/10.12989/scs.2020.34.2.279
- Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure vol.74, pp.2, 2006, https://doi.org/10.12989/sem.2020.74.2.297
- Free vibration of FG-GPLRC conical panel on elastic foundation vol.75, pp.1, 2020, https://doi.org/10.12989/sem.2020.75.1.001
- Vibration control of laminated truncated conical shell via magnetostrictive layers vol.27, pp.20, 2006, https://doi.org/10.1080/15376494.2018.1525627
- A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2006, https://doi.org/10.1007/s11831-019-09365-5
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047