참고문헌
- Amadio, C. and Fragiacomo, M. (2005), 'Effective width evaluation of steel-concrete composite beams', J. Const. Steel Res., 58, 373-388
- Ayoub, A. (2001), 'A two-field mixed variational principle for partially connected composite beams', Finite Elements in Analysis and Design, 37, 929-959 https://doi.org/10.1016/S0168-874X(01)00076-2
- Ayoub, A. and Filippou, E C. (2000), 'Mixed formulation of nonlinear steel-concrete composite beam element', J. Struct. Eng., ASCE, 126(3), 371-381 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(371)
- Bazant, Z. P. (1972), 'Prediction of concrete creep effects using age-adjusted effective modulus method', ACI J., 69(4),212-217
- Baz ant, Z. P. and Oh, B. H. (1984), 'Deformation of progressively cracking reinforced concrete beams', ACI J., 81(3), 268-278
- Cas, B., Bratina, S., Saje, M. and Planinc, I. (2004), 'Non-linear analysis of composite steel-concrete beams with incomplete interaction', Steel and Composite Structures, 4(6), 489-507 https://doi.org/10.12989/scs.2004.4.6.489
- CEB (Comite Euro-Intemational du Beton), (1984) CEB Design Manual on Structural Effects of Time-Dependent Behaviour of Concrete, edited by Chiorino, M. A., Napoli, P., Mola, E and Koprna, M., Georgi Publishing, Saint-Saphorin, Switzerland
- CEB-FIB (Comite Euro-International du Beton -Federation International de la Precontrainte) (1993), Model Code 1990: Design Code, Thomas Telford, London
- Cook, R., Malkus, D., Plesha, M. and Witt, R. (2001), Concepts and Applications of Finite Element Analysis, 4th edition, Wiley
- Cosenza, E. and Mazzolani, S. (1993), 'Linear-elastic analysis of composite beams with partial shear interaction', Proc. of the First Italian Workshop on Composite Structures, University of Trento June 1993. (In Italian)
- Cosenza, E. and Zandonini, R. (1999), 'Composite Construction', edited by Chen Wai-Fah in Structural Engineering Handbook, CRC Press LLC
- Dall'Asta, A. and Zona, A. (2004), 'Three-field mixed formulation for the non-linear analysis of composite beams with deformable shear connection', Finite Elements in Analysis and Design, 40, 425-448. https://doi.org/10.1016/S0168-874X(03)00071-4
- Dall'Asta, A. and Zona, A. (2002), 'Non-linear analysis of composite beams by a displacement approach', Comp. Struct., 80, 2217-2228 https://doi.org/10.1016/S0045-7949(02)00268-7
- Dezi, L., Gara, E, Leoni, G and Tarantino, A. M. (2001), 'Time dependent analysis of shear-lag effect in composite beams', J. Eng. Mech., 127(1), 71-79 https://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(71)
- Dezi, L., Leoni, G and Tarantino, A. M. (1998), 'Creep and shrinkage analysis of composite beams', Progress in Structural Engineering and Materials, 1(2), 170-177
- Dezi, L., Leoni, G and Tarantino, A. M. (1996), 'Algebraic methods for creep analysis of continuous composite beams', J. Struct. Eng., ASCE, 122(4),423-430 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(423)
- Dezi, L. and Tarantino, A. M. (1993a), 'Creep in composite continuous beams - I: Theoretical treatment', J. Struct. Eng., ASCE, 119(7), 2095-2111 https://doi.org/10.1061/(ASCE)0733-9445(1993)119:7(2095)
- Dezi, L. and Tarantino, A. M. (1993b), 'Creep in composite continuous beams - II: Parametric study', J. Struct. Eng., ASCE, 119(7),2112-2133 https://doi.org/10.1061/(ASCE)0733-9445(1993)119:7(2112)
- Eurocode 5 (1995), Design of timber structures - Part 1.1: General rules and rules for buildings, CEN
- Fabbrocino, G, Manfredi, G and Cosenza, E. (2000), 'Analysis of continuous composite beams including partial interaction and bond', J. Struct. Eng., ASCE, 126(11), 1288-1294 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1288)
- Faella, C., Martinelli, E. and Nigro, E. (2003), 'Steel connection nonlinearity and deflections of steel-concrete composite beams: A simplified approach', J. Struct. Eng., ASCE, 129(1), 12-20 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(12)
- Faella, C; Martinelli, E. and Nigro, E. (2002), 'Steel and concrete composite beams with flexible shear connection: 'exact' analytical expression of the stiffuess matrix and applications', Comput. Struct., 80, 1001-1009 https://doi.org/10.1016/S0045-7949(02)00038-X
- Fragiacomo, M., Amadio, C. and Macorini, L. (2002), 'Influence of viscous phenomena on steel-concrete composite beams with normal or high performance slab', Steel and Composite Structures, 2(2), 85-98 https://doi.org/10.12989/scs.2002.2.2.085
- Gattesco, N. (1999), 'Analytical modelling of nonlinear behaviour of composite beams with deformable connection', J. Constr. Steel Res., 52, 195-218 https://doi.org/10.1016/S0143-974X(99)00026-7
- Gere.T, M. (2001), Mechanics of Materials, 5th edition, Brooks/Cole.
- Gilbert, R. I. (1988), Time Effeas in Concrete Structures, Elservier Science Publishers, Amsterdam, The Netherlands
- Gilbert, R. I. and Bradford, M. A. (1995), 'Time-dependent behavior of continuous composite beams at service loads', J. Struct. Eng., ASCE, 121(2),319-327
- Girhammar, U. A. and Pan, D. (1993), 'Dynamic analysis of composite members with inter1ayer slip', Int. J. Solids Struct., 30(6), 797-823 https://doi.org/10.1016/0020-7683(93)90041-5
- Goodman, J. R. and Popov, E. P. (1968), 'Layered beam systems with interlayer slip', J. Struct. Div , Proc. of the American Society of Civil Engineers, 94(11), 2535-2547
- Kwak, H. G and Seo, Y. L. (2002), 'Time-dependent behaviour of composite beams with flexible connectors', Comput. Method Appl. Mech. Eng., 191, 3751-3772 https://doi.org/10.1016/S0045-7825(02)00293-1
- Loh, H., Uy, B. and Bradford, M. A. (2004), 'The effects of partial shear interaction in the hogging moment regions of composite beams: Part II - Analytical study', J. Constr. Steel Res., 60, 921-962 https://doi.org/10.1016/j.jcsr.2003.10.008
- Moin, P. (2001), Fundamentals of Engineering Numerical Analysis, Cambridge University Press
- Newmark, N. M., Siess, C. P. and Viest I. M. (1951), 'Tests and analysis of composite beams with incomplete interaction', Proc. of the Society of Experimental Stress Analysis, 9(1), 75-92
- Nguyen, N. T, Oehlers, D. J. and Bradford, M. A. (1998), 'A rational model for the degree of interaction in composite beams with flexible shear connectors', Mechanics of Structures and Machines, 26(2),175-194 https://doi.org/10.1080/08905459808945426
- Oehlers, D. J. and Bradford, M. A. (1995), Composite Steel and Concrete Structural Members: Fundamental Behaviour, Pergamon Press, Oxford
- Oehlers, D. J. and Sved, G (1995), 'Composite beams with limited-slip-capacity connectors', J. Struct. Eng., ASCE, 121(6), 932-938
- Ranzi, G and Bradford, M. A. (2006), 'Analytical solutions for the time-dependent behaviour of composite beams with partial interaction', Int. J Solids Struct., 43(13), 3770-3793 https://doi.org/10.1016/j.ijsolstr.2005.03.032
- Ranzi, G and Bradford, M. A. (2005), 'Time analysis of structural concrete elements using the equivalent displacement approach', Mater. Struct., 38(280), 609-616 https://doi.org/10.1007/BF02481592
- Ranzi, G, Bradford, M. A. and Uy, B. (2004), 'A direct stiffness analysis of a composite beam with partial interaction', Int. J. Numer. Methods Eng., 61, 657-672 https://doi.org/10.1002/nme.1091
- Salari, M. R. and Spacone, E. (2001), 'Finite element formulations of one-dimensional elements with bond-slip', Eng. Struct., 23(7), 815-826 https://doi.org/10.1016/S0141-0296(00)00094-8
- Seracino, R., Lee, C. T, Lim, T C. and Lim, J. Y. (2004), 'Partial interaction stresses in continuous composite beams under serviceability loads', J. Constr. Steel Res., 60, 1525-1543 https://doi.org/10.1016/j.jcsr.2004.01.002
- Tarantino, A. M. and Dezi, L. (1992), 'Creep effects in composite beams with flexible shear connectors', J Struct. Eng., ASCE, 118(8),2063-2081 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2063)
- Virtuoso, F. and Vieira, R. (2004), 'Time dependent behaviour of continuous composite beams with flexible connection', J. Constr. Steel Res., 60, 451-463 https://doi.org/10.1016/S0143-974X(03)00123-8
- Wu, Y. F., Oehlers, D. J. and Griffith, M. C. (2002), 'Partial-interaction analysis of composite beam/ column members', Mech. Struct. Mach., 30(3), 309-332 https://doi.org/10.1081/SME-120004420
피인용 문헌
- Numerical procedure for nonlinear behavior analysis of composite slim floor beams vol.106, 2015, https://doi.org/10.1016/j.jcsr.2014.12.015
- Analytical and numerical analysis of multilayered beams with interlayer slip vol.32, pp.6, 2010, https://doi.org/10.1016/j.engstruct.2010.02.015
- State of the art on the time-dependent behaviour of composite steel–concrete structures vol.80, 2013, https://doi.org/10.1016/j.jcsr.2012.08.005
- Full-scale long-term experiments of simply supported composite beams with solid slabs vol.67, pp.3, 2011, https://doi.org/10.1016/j.jcsr.2010.11.001
- Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1237
- Behaviour of Stiffened Composite Beams with Partial Shear Interaction Accounting for Time Effects vol.14, 2011, https://doi.org/10.1016/j.proeng.2011.07.050
- Lenkiamosios gelžbetoninės sijos su papildoma anglies pluošto kompozito armatūra laikomosios galios sumažėjimas dėl šlyties vol.1, pp.5, 2009, https://doi.org/10.3846/mla.2009.5.08
- Locking problems in the partial interaction analysis of multi-layered composite beams vol.30, pp.10, 2008, https://doi.org/10.1016/j.engstruct.2008.04.006
- Generalised Beam Theory for composite beams with longitudinal and transverse partial interaction vol.22, pp.10, 2017, https://doi.org/10.1177/1081286516653799
- FE modeling and numerical investigation of shallow cellular composite floor beams vol.119, 2016, https://doi.org/10.1016/j.jcsr.2015.12.022
- Flexural performance of composite walls under out-of-plane loads vol.34, pp.4, 2006, https://doi.org/10.12989/scs.2020.34.4.525
- Experimental Research of the Time-Dependent Effects of Steel–Concrete Composite Girder Bridges during Construction and Operation Periods vol.13, pp.9, 2006, https://doi.org/10.3390/ma13092123
- Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads vol.38, pp.4, 2006, https://doi.org/10.12989/scs.2021.38.4.463