DOI QR코드

DOI QR Code

Finite element response sensitivity analysis of continuous steel-concrete composite girders

  • Zona, Alessandro (Department PROCAM, University of Camerino) ;
  • Barbato, Michele (Department of Structural Engineering, University of California) ;
  • Conte, Joel P. (Department of Structural Engineering, University of California)
  • 투고 : 2004.12.30
  • 심사 : 2005.11.30
  • 발행 : 2006.06.25

초록

The behavior of steel-concrete composite beams is strongly influenced by the type of shear connection between the steel beam and the concrete slab. For accurate analytical predictions, the structural model must account for the interlayer slip between these two components. This paper focuses on a procedure for response sensitivity analysis using state-of-the-art finite elements for composite beams with deformable shear connection. Monotonic and cyclic loading cases are considered. Realistic cyclic uniaxial constitutive laws are adopted for the steel and concrete materials as well as for the shear connection. The finite element response sensitivity analysis is performed according to the Direct Differentiation Method (DDM); its analytical derivation and computer implementation are validated through Forward Finite Difference (FFD) analysis. Sensitivity analysis results are used to gain insight into the effect and relative importance of the various material parameters in regards to the nonlinear monotonic and cyclic response of continuous composite beams, which are commonly used in bridge construction.

키워드

참고문헌

  1. Ansourian, P. (1981), 'Experiments on continuous composite beams', Proc. Instn. Civ. Engrs. Part 2, 71(Dec.), 25-51
  2. Ayoub, A. and Filippou, F. C. (2000), 'Mixed formulation of nonlinear steel-concrete composite beam element', J. Struct. Eng., ASCE, 126(3),371-381 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(371)
  3. Balan, T. A., Filippou, F. C. and Popov, E. P., (1997), 'Constitutive model for 3D cyclic analysis of concrete structures', J. Eng. Mech., ASCE, 123(2), 143-153 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(143)
  4. Balan, T. A., Spacone, E. and Kwon, M. (2001), 'A 3D hypoplastic model for cyclic analysis of concrete structures', Eng. Struct., 23(4), 333-342 https://doi.org/10.1016/S0141-0296(00)00048-1
  5. Bathe, K. J. (1995), Finite Element Procedures. Prentice Hall
  6. Bursi, O. S. and Gramola, G (2000), 'Behaviour of composite substructures with full and partial shear connection under quasi-static cyclic and pseudo-dynamic displacements'. Material and Structures, RILEM, 33, 154-163 https://doi.org/10.1007/BF02479409
  7. CEN, Comite Europeen de Normalization (1997a), Eurocode 4: Design of composite steel and concrete structures Part 1.1: General - Common rules and ruledfor buildings, ENV 1994-1, Brussels
  8. CEN, Comite Europeen de Normalization (1997b), Eurocode 4: Design of composite steel and concrete structures Part 2: Bridges, ENV 1994-2, Brussels
  9. Chopra, A. K. (2001), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Second Edition, Prentice Hall
  10. Conte, J. P. (2001), 'Finite element response sensitivity analysis in earthquake engineering', Earthquake Engineering Frontiers in the New Millennium. Spencer & Hu, Swets & Zeitlinger, 395-401
  11. Conte, J. P., Vijalapura, P. K. and Meghella, M. (2003), 'Consistent finite element response sensitivities in seismic reliability analysis', J. Eng. Mech., ASCE, 129(12), 1380-1393 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1380)
  12. Conte, J. P., Barbato, M. and Spacone, E. (2004), 'Finite element response sensitivity analysis using force-based frame models', Int. J. Numer. Methods Eng., 59(13),1781-1820 https://doi.org/10.1002/nme.994
  13. Dall' Asta, A. (2001), 'Composite beams with weak shear connection', Int. J. Solids Struct., 38(32-33), 5605-5624 https://doi.org/10.1016/S0020-7683(00)00369-3
  14. Dall'Asta, A. and Zona, A. (2002), 'Non-linear analysis of composite beams by a displacement approach', Comput. Struct., 80(27-30), 2217-2228 https://doi.org/10.1016/S0045-7949(02)00268-7
  15. Dall'Asta, A. and Zona, A. (2004a), 'Three-field mixed formulation for the non-linear analysis of composite beams with deformable shear connection', Finite Elements in Analysis and Design, 40(4), 425-448 https://doi.org/10.1016/S0168-874X(03)00071-4
  16. Dall' Asta, A. and Zona, A. (2004b), 'Slip-locking in finite elements for composite beams with deformable shear connection', Finite Elements in Analysis and Design, 40(13-14), 1907-1930 https://doi.org/10.1016/j.finel.2004.01.007
  17. Dall'Asta, A. and Zona, A. (2004c), 'Comparison and validation of displacement and mixed elements for the non-linear analysis of continuous composite beams', Comput. Struct., 82(23-26), 2117-2130 https://doi.org/10.1016/j.compstruc.2004.04.009
  18. Ditlevsen, O. and Madsen, H. O. (1996), Structural Reliability Methods. Wiley
  19. Eligenhausen, R., Popov, E. P. and Bertero, V. V. (1983), 'Local bond stress-slip relationships of deformed bars under generalized excitations', Report No. 83/23, EERC Earthquake Engineering Research Center, University of California, Berkeley, p.162
  20. Gu, Q. and Conte, J. P. (2003), 'Convergence studies in nonlinear finite element response sensitivity analysis', Proc. of the 9th Int. Conf. on Applications of Statistics and Probability in Civil Engineering, San Francisco, CA, USA
  21. Haftka, R. T, and Glirdal, Z. (1992), Elements of Structural Optimization. Kluwer Academic Publishers
  22. Kleiber, M., Antunez, H., Hien, T. D. and Kowalczyk, P. (1997), Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations. Wiley
  23. Kwon, M. and Spacone, E. (2002), 'Three-dimensional finite element analyses of reinforced concrete columns', Comput. Struct., 80(2), 199-212 https://doi.org/10.1016/S0045-7949(01)00155-9
  24. Li, C. C. and Der Kiureghian, A. (1995), 'Mean out-crossing rate of nonlinear response to stochastic input', Proc. of the 7th Int. Conf. on Applications of Statistics and Probability (ICASP7), 1, 295-302
  25. Melchers, R. M. (1999), Structural Reliability Analysis and Prediction, Second edition, Wiley
  26. Newmark, N. M., Siess, C. P. and Viest, I. M. (1951), 'Tests and analysis of composite beams with incomplete interaction', Proc. Soc. Exp. Stress Anal., 9(1), 75-92
  27. Oehlers, D. J. and Bradford, M. A. (2000), Elementary Behaviour of Composite Steel and Concrete Structural Members, Butterworth-Heinemann
  28. Ollgaard, J. G, Slutter, R. G and Fisher, J. W. (1971), 'Shear strength of stud connectors in lightweight and normal weight concrete', AISC Eng J, 55-64
  29. Salari, M. R. and Spacone, E. (2001), 'Analysis of steel-concrete composite frames with bond-slip', J. Struct. Eng., ASCE, 127(11), 1243-1250 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:11(1243)
  30. Spacone, E. and El-Tawil, S. (2004), 'Nonlinear analysis of steel-concrete composite structures: state of the art', J. Struct. Eng., ASCE, 130(2), 159-168 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(159)
  31. Vijalapura, P. K., Conte, J. P. and Meghella, M. (2000), 'Time-variant reliability analysis of hysteretic SDOF systems with uncertain parameters and subjected to stochastic loading', Proc. of the 8th Int. Conf. on Applications ofStatistics and Probability in Civil Engineering (ICASP8), Sydney, Australia, 827-834
  32. Zona, A., Barbato, M. and Conte, J. P. (2004), 'Finite element response sensitivity analysis of steel-concrete composite structures', Report SSRP-04/02, Department of Structural Engineering, University of California, San Diego
  33. Zona, A., Barbato, M. and Conte, J. P. (2005), 'Finite element response sensitivity analysis of steel-concrete composite beams with deformable shear connection', J. Eng. Mech., ASCE, 131(11), 1126-1139 https://doi.org/10.1061/(ASCE)0733-9399(2005)131:11(1126)

피인용 문헌

  1. Bayesian optimal estimation for output-only nonlinear system and damage identification of civil structures 2018, https://doi.org/10.1002/stc.2128
  2. Design and Experimental Analysis of an Externally Prestressed Steel and Concrete Footbridge Equipped with Vibration Mitigation Devices vol.21, pp.8, 2016, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000842
  3. New Multidimensional Visualization Technique for Limit-State Surfaces in Nonlinear Finite-Element Reliability Analysis vol.136, pp.11, 2010, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000183
  4. Stochastic sensitivity analysis for structural dynamics systems via the second-order perturbation vol.86, pp.11, 2016, https://doi.org/10.1007/s00419-016-1149-1
  5. OpenSees-SNOPT Framework for Finite-Element-Based Optimization of Structural and Geotechnical Systems vol.138, pp.6, 2012, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000511
  6. Shear connection slip demand in composite steel–concrete beams with solid slabs vol.102, 2014, https://doi.org/10.1016/j.jcsr.2014.07.018
  7. Web Buckling and Ultimate Strength of Composite Plate Girders Subjected to Shear and Bending vol.15, pp.02, 2015, https://doi.org/10.1142/S0219455414500473
  8. A new 3-D element formulation on displacement of steel-concrete composite box beam vol.20, pp.5, 2013, https://doi.org/10.1007/s11771-013-1622-8
  9. Structural analysis of a composite continuous girder with a single rectangular web opening vol.13, pp.2, 2017, https://doi.org/10.1016/j.hbrcj.2015.06.004
  10. Probabilistic Push-Over Analysis of Structural and Soil-Structure Systems vol.136, pp.11, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000231
  11. 11.18: Seismic analysis of innovative hybrid steel concrete coupled walls vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.350
  12. Probabilistic Nonlinear Response Analysis of Steel-Concrete Composite Beams vol.140, pp.1, 2014, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000803
  13. Probabilistic analysis for design assessment of continuous steel–concrete composite girders vol.66, pp.7, 2010, https://doi.org/10.1016/j.jcsr.2010.01.015
  14. Probabilistic-based assessment of composite steel-concrete structures through an innovative framework vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1345
  15. Handling of Constraints in Finite-Element Response Sensitivity Analysis vol.135, pp.12, 2009, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000053
  16. Particle Swarm Optimization–Based Finite-Element Analyses and Designs of Shear Connector Distributions for Partial-Interaction Composite Beams vol.24, pp.4, 2019, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001371
  17. Flexural behaviour of square UHPC-filled hollow steel section beams vol.43, pp.2, 2012, https://doi.org/10.12989/sem.2012.43.2.225
  18. Study on the System Reliability of Steel-Concrete Composite Beam Cable-stayed Bridge vol.10, pp.None, 2006, https://doi.org/10.2174/1874149501609010194
  19. Influence of Shear Connection Distributions on the Behaviour of Continuous Steel-concrete Composite Beams vol.11, pp.1, 2017, https://doi.org/10.2174/1874149501711010384
  20. Information-Theoretic Approach for Identifiability Assessment of Nonlinear Structural Finite-Element Models vol.145, pp.7, 2006, https://doi.org/10.1061/(asce)em.1943-7889.0001590