과제정보
연구 과제 주관 기관 : National Science Council
참고문헌
- ACI Committee 318 (1989), Building Code Requirements for Structural Concrete (ACI 318-89), American Concrete Intitute, Detroi
- ACI Committee 318 (2005), 'Building code requirements for structural concrete (ACI 318-05) and commentary (318R-05)', American Concrete Intitute, Farmington Hills, Mich
- Anderson, P. (1935), 'Experiments with concrete in torsion', Transactions ASCE, 60, 641-652
- Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford: Clarendon Press
- Collion, C.D., Walsh, P.F., Archer, F.E., and Hall, A.S. (1965), 'Reinforced concrete beams subjected to combined torsion and shear', UNICIV Report, No. R-14, University of New South Wales
- Consolazio, G.R. (2000), 'Iterative equation solver for bridge analysis using neural networks', Comput. Aided Civil Infrastruct. Eng., 15(2), 107-119 https://doi.org/10.1111/0885-9507.00176
- Cowan, H.J. (1950), 'Elastic theory for torsional strength of rectangular reinforced concrete beams', Mag. Concrete Res., 2(4), 3-8 https://doi.org/10.1680/macr.1950.2.4.3
- Elfegren, L., Karlsson, I., and Losberg, A. (1974), 'Torsion bending-shear interaction for concrete beams', J. Struct. Div., ASCE, 100(ST8), 1657-1676
- Fang, I.K. and Shiau, J.K. (2004), 'Torsional behavior of normal- and high-strength concrete beams', ACI Struct. J, 101(3), 304-313
- Ghaboussi, J., Garrett, J.H., and Wu, X. (1991), 'Knowledge-based modeling of material behavior with neural networks', J. Eng. Mech., ASCE, 117(1), 129-134
- Goode, C.D. and Helmy, M.A. (1968), 'Ultimate strength of reinforced concrete beams in bending and torsion', Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, 357-377
- Hajela, P. and Berke, L. (1991), 'Neurobiological computational models in structural analysis and design', Comput. Struct., 41(4), 657-667 https://doi.org/10.1016/0045-7949(91)90178-O
- Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, Englewoods Cliffs, NJ: Macmillan
- Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, New Jersey
- Hopfield, J.J. (1982), 'Neural network and physical systems with emergent collective computational abilities', Proceeding of the National Academy of Science, 79, 2554-2558
- Hsu, T.T.C. (1968a), 'Torsion of structural concrete-plain concrete rectangular sections', Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, 203-238
- Hsu, T.T.C. (1968b), 'Torsion of structural concrete-behavior of reinforced concrete rectangular members', Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, 261-306
- Hsu, T.T.C. and Mo, Y.L. (1985b), 'Softening of concrete in torsional members-design and recommendations', ACI Struct. J., 82(4), 443-452
- Hsu, T.T.C. and Mo, Y.L. (1985a), 'Softening of concrete in torsional members-theory and tests', ACI Struct. J., 82(3), 290-303
- Jang, J.S.R., Sun, C.T., and Mizutani, E. (1997), Neuro-Fuzzy and Soft Computing, Prentice-Hall, New Jersey
- Kohonen, T. (1988), 'An introduction to neural computing', Neural Networks, 1, 3-16
- Koutchoukali, N.E. and Belarbi, A. (2001), 'Torsion of high-strength reinforced concrete beams and minimum reinforcement requirement', ACI Struct. J., 98(4), 462-469
- Lessig, N.N. (1958), 'Theoretical and experimental investigation of reinforced concrete elements subjected to combined bending and torsion', Theory of Design and Construction of Reinforced Concrete Structures, Moscow, 73-84
- MacGregor, J.G. and Ghoneim, M.G. (1995), 'Design for torsion', ACI Struct. J., 92(2), 211-218
- Moody, J.E. and Darken, C.J. (1989), 'Fast learning in networks of locally tuned processing units', Neural Computation, 1, 281-303 https://doi.org/10.1162/neco.1989.1.2.281
- Rasmussen, L.J. and Baker, G. (1995), 'Torsion in reinforced normal and high-strength concrete beams part 1: experimental test series', ACI Struct, J., 92(1), 56-62
- Rausch, E. (1929), 'Design of reinforced concrete in torsion', Technische Hochschule, Berlin, 53. (in German)
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), 'Learning internal representation by error propagation', Parallel Distributed Processing, 1, Rumelhart, D.E., and McClelland, J.L. (eds.), M.I.T Press, Cambridge, MA, 318
- Sanad, A. and Saka, M.P. (2001), 'Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks', J. Struct. Eng., 127(7), 818-28 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)
- Schwenker, F., Kestler, H.A., Palm, G. and Hoher, M. (1994), 'Similarities of LVQ and RBF learning-a survey of learning rules and the application to the classification of signals from high-resolution electrocardiography', Proc. Int. Conf. Syst., Man Cybern, 646-651
- Tang. C.W., Chen, H.J., and Yen, T. (2003), 'Modeling the confinement efficiency of reinforced concrete columns with rectilinear transverse steel using artificial neural networks', J. Struct. Eng., ASCE, 129(6), 775-783 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(775)
- Yeh, I.C. (1999), 'Design of high-performance concrete mixture using neural networks and nonlinear programing', J. Comput. Civil Eng., ASCE, 13(1), 36-42 https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
- Yudin, V.K. (1962), 'Determination of load-carrying capacity of rectangular reinforced concrete elements subjected to combined torsion and bending', Institute Betona i Zhelezobeton, Moscow, No. 6, 209-269. (in Russian)
- Zhao, Z. and Ren, L. (2002). 'Failure criterion of concrete under triaxial stresses using neural networks'. Comput. Aided Civil Infrastruct. Eng., 17(1), 68-73 https://doi.org/10.1111/1467-8667.00254
피인용 문헌
- Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs vol.4, pp.6, 2007, https://doi.org/10.12989/cac.2007.4.6.477
- Radial Basis Function Network-Based Approach for Determining Interaction Behavior of Reinforced Concrete Rectangular Columns vol.39, pp.11, 2014, https://doi.org/10.1007/s13369-014-1401-3
- Genetic-programming-based modeling of RC beam torsional strength vol.14, pp.3, 2010, https://doi.org/10.1007/s12205-010-0371-6
- An evolutionary approach for modeling of shear strength of RC deep beams vol.46, pp.12, 2013, https://doi.org/10.1617/s11527-013-0039-z
- An empirical model for shear capacity of RC deep beams using genetic-simulated annealing vol.13, pp.3, 2013, https://doi.org/10.1016/j.acme.2013.02.007
- Predicting of torsional strength of RC beams by using different artificial neural network algorithms and building codes vol.41, pp.7-8, 2010, https://doi.org/10.1016/j.advengsoft.2010.05.009
- Comparison of ANN and RKS approaches to model SCC strength vol.310, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/310/1/012037
- Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0246-7
- Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network vol.8, pp.3, 2006, https://doi.org/10.12989/cac.2011.8.3.279
- Neuro-Fuzzy modeling of torsional strength of RC beams vol.9, pp.6, 2006, https://doi.org/10.12989/cac.2012.9.6.469
- FEM Analysis of RC Deep Beam Depending on Shear-Span Ratio vol.19, pp.4, 2017, https://doi.org/10.5659/aikar.2017.19.4.117
- Sectional Analysis Procedure for Reinforced Concrete Members Subjected to Pure Torsion vol.2019, pp.None, 2006, https://doi.org/10.1155/2019/6019321
- Practical optimization of power transmission towers using the RBF-based ABC algorithm vol.73, pp.4, 2006, https://doi.org/10.12989/sem.2020.73.4.463
- Torsional Behavior Evaluation of Reinforced Concrete Beams Using Artificial Neural Network vol.11, pp.10, 2021, https://doi.org/10.3390/app11104465