DOI QR코드

DOI QR Code

Large-scale quasi-steady modelling of a downburst outflow using a slot jet

  • Lin, W.E. (Department of Mechanical & Materials Engineering, The University of Western Ontario) ;
  • Savory, E. (Department of Mechanical & Materials Engineering, The University of Western Ontario)
  • Received : 2006.06.22
  • Accepted : 2006.09.22
  • Published : 2006.12.25

Abstract

This article synthesizes the literature on the meteorology, experimental simulation, and wind engineering ramifications of intense downburst outflows. A novel design of a large-scale test facility and experimental evidence of its validity are presented. A two-dimensional slot jet is used to simulate only the outflow region of a downburst. Profiles of mean velocity and turbulence quantities are acquired using hot-wire anemometry. Comparison with the literature provides empirical evidence that supports the current approach. A geometric analysis considers the validity of applying a two-dimensional approximation for downburst wind loading of structures. This analysis is applicable to power transmission lines in particular. The slot jet concept can be implemented in a large boundary layer wind tunnel to enable large-scale laboratory experiments of thunderstorm wind loads on structures.

Keywords

References

  1. Abrahamsson, H., Johansson, B., and Lofdahl, L. (1994), 'A turbulent plane two-dimensional wall-jet in a quiescent surrounding', Euro. J. Mech., B/Fluids, 13(5), 533-556
  2. Alahyari, A. and Longmire, E. K. (1995), 'Dynamics of experimentally simulated microbursts', AIAA J., 33( 11), 2128-2136 https://doi.org/10.2514/3.12957
  3. American Society of Civil Engineers (1999), 'Wind tunnel studies of buildings and structures', ASCE Manuals and Reports on Engineering Practice No. 67, second edition, editor: N. Isyumov, publisher: ASCE
  4. Charba, J. (1974), 'Application of gravity current model to analysis of squall-line gust front', Mon. Weather Rev., 102, February, 140-156 https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2
  5. Chay, M. T. and Letchford, C. W. (2002), 'Pressure distributions on a cube in a simulated thunderstorm downburst-Part A: Stationary downburst observations', J. Wind Eng. Ind. Aerodyn., 90, 711-732 https://doi.org/10.1016/S0167-6105(02)00158-7
  6. Choi, E. C. C. (2004), 'Field measurement and experimental study of wind speed profile during thunderstorms', J. Wind Eng. Ind. Aerodyn., 92, 275-290 https://doi.org/10.1016/j.jweia.2003.12.001
  7. Choi, E. C. C. and Hidayat F. A. (2002), 'Dynamic response of structures to thunderstorm winds', Prog. Struct. Eng. Mater., 4, 408-416 https://doi.org/10.1002/pse.132
  8. Cook, N. J. (1973), 'On simulating the lower third of the urban adiabatic boundary layer in a wind tunnel', Atmos. Env., 7, 691-705 https://doi.org/10.1016/0004-6981(73)90151-0
  9. Forthrnann, E. (1934), 'Uber turbulente Strahlausbreitung', Ing. Arch. (Arch Appl. Mech.), 5(1), 42-54. Translated as: 'Turbulent jet expansion', NACA Technical Memorandum #789, March 1936
  10. Fujita, T. T. (1981), 'Tornadoes and downbursts in the context of generalized planetary scales', J. Atmos. Sci., 38(8), 1511-1534 https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
  11. Fujita, T. T. (1985), 'The downburst: Microburst and macroburst', University of Chicago, Department of Geophysical Sciences, Satellite and Mesometeorology Research Project, Research Paper #210
  12. Fujita, T. T. (1990), 'Downbursts: Meteorological features and wind field characteristics', J. Wind Eng. Ind. Aerodyn., 36, 75-86 https://doi.org/10.1016/0167-6105(90)90294-M
  13. Fujita, T. T. and Wakimoto, R. M. (1981), 'Five scales of airflow associated with a series of downbursts on 16 July 1980', Mon. Weather Rev., 109, 1439-1456 July
  14. Gartshore, I. and Hawaleshka, O. (1964), 'The design of a two-dimensional blowing slot and its application to a turbulent wall jet in still air', McGill University, McGill Engineering Research Laboratory, Technical Note 645 June
  15. Gast, K. D. and Schroeder, J. L. (2003), 'Supercell rear-flank downdraft as sampled in the 2002 thunderstorm outflow experiment', Proceedings of the 11th International Conference on Wind Engineering, Lubbock, TX, USA, 2-5 June, 2233-2240
  16. Hjelmfelt, M. R. (1988), 'Structure and life cycle of microburst outflows observed in Colorado', J. Appl. Meteorol., 27, 900-927 https://doi.org/10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2
  17. Hjelmfelt, M. R. (2003), 'Microbursts and their numerical simulation', Preprints of the Harold D. Orville Symposium, Rapid City, SD, USA, 26 April, 51-67. Available from: Institute of Atmospheric Sciences, South Dakota School of Mines and Technology, USA
  18. Holmes, J. D. (1992), 'Physical modelling of thunderstorm downdrafts by wind-tunnel jet', Australian Wind Engineering Society Second Workshop on Wind Engineering, Melbourne, Australia, 20-21 February
  19. Holmes, J. D. (1999), 'Modelling of extreme thunderstorm winds for wind loading of structures and risk assessment', Wind Engineering into the 21st Century, Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, Denmark, 21-25 June, publisher: Balkema, Netherlands, 1409-1415
  20. Holmes, J. D. (2001), Wind Loading of Structures, Spon Press, New York, NY, USA
  21. Holmes, J. D. and Oliver, S. E. (2000), 'An empirical model ofa downburst', Eng. Struct., 22, 1167-1172 https://doi.org/10.1016/S0141-0296(99)00058-9
  22. Irwin, H. P. A. H. (1973), 'Measurements in a self-preserving plane wall jet in a positive pressure gradient', J. Fluid Mech., 61(1), 33-63 https://doi.org/10.1017/S0022112073000558
  23. Knowles, K. and Myszko, M. (1998), 'Turbulence measurements in radial wall-jets', Exp. Therm. Fluid Sci., 17, 71-78 https://doi.org/10.1016/S0894-1777(97)10051-6
  24. Launder, B. E. and Rodi, W. (1981), 'The turbulent wall jet', Prog. Aerospace Sci., 19, 81-128 https://doi.org/10.1016/0376-0421(79)90002-2
  25. Letchford, C. W. and Illidge, G. (1999), 'Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet', Wind Engineering into the 21st Century, Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, Denmark, 21-25 June, publisher: Balkema, Netherlands, 1907-1912
  26. Letchford, C. W., Mans, C., and Chay, M. T. (2002), 'Thunderstorms - their importance in wind engineering (a case for the next generation wind tunnel)', J. Wind Eng. Ind. Aerodyn., 90(12-15), 1415-1433 https://doi.org/10.1016/S0167-6105(02)00262-3
  27. Lin, W. E. (2005), 'Large-scale physical simulation of a microburst outflow using a slot jet', University of Western Ontario, MESc thesis, December
  28. Lundgren, T. S., Yao, J., and Mansour, N. N. (1992), 'Microburst modelling and scaling', J. Fluid Mech., 239, 461-488 https://doi.org/10.1017/S002211209200449X
  29. Mara, T. G. and Galsworthy, J. K. (2006), Private Communications
  30. Mason, M., Letchford, C. W., and James, D. (2003), 'Pulsed jet simulation of a thunderstorm downburst', Proceeding of the 11th International Conference on Wind Engineering, Lubbock, TX, USA, 2-5 June, 2249-2256
  31. Mason, M. S., Letchford, C. W., and James, D. L. (2005), 'Pulsed wall jet simulation of a stationary thunderstorm downburst, Part A: Physical structure and flow field characterization', J. Wind Eng. Ind. Aerodyn., 93, 557-580 https://doi.org/10.1016/j.jweia.2005.05.006
  32. Mehta, R. D. (1977), 'The aerodynamic design of blower tunnels with wide-angle diffusers', Prog. Aero. Sci., 18, 59-120 https://doi.org/10.1016/0376-0421(77)90003-3
  33. Nicholls, M., Pielke, R., and Meroney, R. (1993), 'Large eddy simulation of micro burst winds flowing around a building', J. Wind Eng. Ind. Aerodyn., 46 & 47, 229-237 https://doi.org/10.1016/0167-6105(93)90288-Y
  34. Poreh, M., Tsuei, Y. G., and Cermak, J. E. (1967), 'Investigation of a turbulent radial wall jet', J. Appl. Mech., 34, 457-463 https://doi.org/10.1115/1.3607705
  35. Proctor, F. H. (1988), 'Numerical simulations of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci., 45(21), 3137-3160 https://doi.org/10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2
  36. Sarkar, P. P. and Haan, Jr., F. L. (2002), 'Next generation wind tunnels for simulation of straight-line, thunderstorm- and tornado-like winds', Proceedings of the 34th Joint Meeting of the US-Japan Panel on Wind and Seismic Effects, Gaithersburg, MD, USA, 13-15 May
  37. Savory, E., Parke, G. A. R., Zeinoddini, M., Toy, N., and Disney, P. (2001), 'Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower', Eng. Struct., 23, 365-375 https://doi.org/10.1016/S0141-0296(00)00045-6
  38. Selvam, R. P. and Holmes J. D. (1992), 'Numerical simulation of thunderstorm downdrafts', J. Wind Eng. Ind. Aerodyn., 41-44, 2817-2825
  39. Verhoff, A. (1970), 'Steady and pulsating two-dimensional turbulent wall jets in a uniform stream', Princeton University, PhD thesis
  40. Wakimoto, R. M. (1982), 'The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data', Mon. Weather Rev., 110, 1060-1082 https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2
  41. Wakimoto, R. M. (2001), 'Convectively driven high wind events', Severe Convective Storms, Meteor. Monogr., 50, 255-298. American Meteorological Society. Editor: CA Doswell III
  42. Wilson, J. W., Roberts, R. D., Kessinger, C., and McCarthy, J. (1984), 'Microburst wind structure and evaluation of Doppler radar for airport wind shear detection', J. Climate Appl. Meteorol., 23, 898-915 https://doi.org/10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2
  43. Wilson, J. W. and Wakimoto, R. M. (2001), 'The discovery of the downburst: T. T. Fujita's contribution', Bull. Amer. Meteorol. Soc., 82(1), January, 49-62 https://doi.org/10.1175/1520-0477(2001)082<0049:TDOTDT>2.3.CO;2
  44. Wood, G S., Kwok, K. C. S., Motteram, N. A., and Fletcher, D. F. (2001), 'Physical and numerical modelling of thunderstorm downbursts', J. Wind Eng. Ind. Aerodyn., 89, 535-552 https://doi.org/10.1016/S0167-6105(00)00090-8
  45. Wygnanski, I., Katz, Y., and Horev, E. (1992), 'On the applicability of various scaling laws to the turbulent wall jet', J. Fluid Mech., 234, 669-690 https://doi.org/10.1017/S002211209200096X
  46. Xu, Z. (2004), 'Experimental and analytical modeling of high intensity winds', University of Western Ontario, PhD thesis, December
  47. Yao, J. and Lundgren, T. S. (1996), 'Experimental investigation of microbursts', Exp. Fluids, 21, 17-25 https://doi.org/10.1007/BF00204631

Cited by

  1. A coupled parametric-CFD study for determining ages of downbursts through investigation of different field parameters vol.123, 2013, https://doi.org/10.1016/j.jweia.2013.09.010
  2. Transient loads on buildings in microburst and tornado winds vol.96, pp.10-11, 2008, https://doi.org/10.1016/j.jweia.2008.02.050
  3. Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field vol.98, pp.6-7, 2010, https://doi.org/10.1016/j.jweia.2009.11.003
  4. Impinging jet simulation of stationary downburst flow over topography vol.10, pp.5, 2007, https://doi.org/10.12989/was.2007.10.5.437
  5. Numerical investigation of the flow field around low rise buildings due to a downburst event using large eddy simulation vol.172, 2018, https://doi.org/10.1016/j.jweia.2017.10.028
  6. Empirical models for predicting unsteady-state downburst wind speeds vol.129, 2014, https://doi.org/10.1016/j.jweia.2014.03.011
  7. Emerging issues and new frameworks for wind loading on structures in mixed climates vol.19, pp.3, 2014, https://doi.org/10.12989/was.2014.19.3.295
  8. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds vol.96, pp.3, 2008, https://doi.org/10.1016/j.jweia.2007.09.001
  9. Gust-Front Factor: New Framework for Wind Load Effects on Structures vol.135, pp.6, 2009, https://doi.org/10.1061/(ASCE)0733-9445(2009)135:6(717)
  10. Proposed large-scale modelling of the transient features of a downburst outflow vol.10, pp.4, 2007, https://doi.org/10.12989/was.2007.10.4.315
  11. The physical simulation of thunderstorm downbursts using an impinging jet vol.12, pp.2, 2006, https://doi.org/10.12989/was.2009.12.2.133
  12. Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility vol.13, pp.1, 2006, https://doi.org/10.12989/was.2010.13.1.021
  13. Physical modelling of a downdraft outflow with a slot jet vol.13, pp.5, 2006, https://doi.org/10.12989/was.2010.13.5.385
  14. A numerical study of a confined turbulent wall jet with an external stream vol.27, pp.2, 2018, https://doi.org/10.12989/was.2018.27.2.101
  15. The Dynamic Effect of Downburst Winds on the Longitudinal Forces Applied to Transmission Towers vol.5, pp.None, 2006, https://doi.org/10.3389/fbuil.2019.00059
  16. Thunderstorm Downbursts and Wind Loading of Structures: Progress and Prospect vol.6, pp.None, 2020, https://doi.org/10.3389/fbuil.2020.00063
  17. Wind Risk Assessment of Electric Power Lines due to Hurricane Hazard vol.21, pp.2, 2020, https://doi.org/10.1061/(asce)nh.1527-6996.0000363
  18. On-Site Measured Gust Response Factors of Transmission Towers Based on SHM System vol.34, pp.1, 2021, https://doi.org/10.1061/(asce)as.1943-5525.0001218
  19. Numerical Study on Plane and Radial Wall Jets to Validate the 2D Assumption for an Idealized Downburst Outflow vol.2021, pp.None, 2006, https://doi.org/10.1155/2021/9993981
  20. Practical Approach to Digitally Simulate Nonsynoptic Wind Velocity Profiles and Its Implications on the Response of Monopole Towers vol.148, pp.1, 2006, https://doi.org/10.1061/(asce)st.1943-541x.0003228