DOI QR코드

DOI QR Code

A study of wind turbine power generation and turbine/tower interaction using large eddy simulation

  • Howard, R.J.A. (Departmento de Engenharia Mecanica, Universidade de Aveiro, Campo Universitaio de Santiago) ;
  • Pereira, J.C.F. (Mechanical Engineering Department, LASEF, Instituto Superior Tecnico)
  • Published : 2006.04.25

Abstract

Wind turbines are highly complex structures for numerical flow simulation. They normally comprise of a turbine mounted on a tower thus the movement of the turbine blades and the blade/tower interaction must be captured. In addition the ground effect should also be included. There are many more important features of wind turbines and it is difficult to include all of them. A simplified set of features is chosen here for both the turbine and the tower to show how the method can begin to identify the main points connected with wind turbine wake generation and tip vortex tower interaction. An approach to modelling the rotating blades of a turbine is proposed here. The model uses point forces based on blade element theory to model the blades and takes into account their time dependent motion. This means that local instantaneous velocities can be used as a basis for the blade element theory. The model is incorporated into a large eddy simulation code and, although many important features are left out of the model, the velocity/power performance relation is generally of the correct order of magnitude. Suggested improvements to the method are discussed.

Keywords

References

  1. Ackennann, C. (2000), 'Developpements et validation de simulation des grandes echelles d'ecoulements turbulents dans un code industriel', PhD thesis, Institut National Polytechnique de Grenoble, France, December
  2. Ammara, I., Leclerc, C. and Masson, M. (2002), 'A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms', J. Solar Eng., ASME, 124, 345-356 https://doi.org/10.1115/1.1510870
  3. Barthelmie, R. J. (Ed.) (2002), 'Offshore wakes: measurements and modelling', Proceeding of the ENDOW workshop, Riso-R-1326(EN), Riso National Laboratory, Roskilde, Denmark, March
  4. Bindner, H. (1999), 'Power control for wind turbines in weak grids', Risoe-R-1117(EN), Risoe National Laboratory, Roskilde, Denmark, March
  5. Dubief Y. and Delcayre, F. (2000), 'Coherent-vortex identification in turbulence', Institute of Physics Publishing Ltd, J. Turbulence, 1(11)
  6. Emonot, P. (1992), 'Methodes de volumes elents finis: application aux equations de Navier-Stokes et resultas de convergence', PhD thesis, Universite Claude Bernard Lyon I
  7. Giguere, P. and Selig, M. S. (1999), 'Design of a tapered and twisted blade for the NREL combined experimental rotor', NRELlSR-500-26173, National Renewable Energy Laboratory, U.S. Department of Energy, April
  8. Hand, M. M., Simms, D. A, Fingersh, L. J, Jager, D. W., Cotrell, J. R, Schreck, S. and Larwood, S. M. (2001), 'Unsteady aerodynamics experiment Phase IV: Wind tunnel test configurations and available data configurations', NREL/TP-500-29955, National Renewable Energy Laboratory, U.S. Department of Energy, December
  9. Hahm, T. and Kroning, J. (2001), '3D simulation of the wake of a wind turbine', Deutsche Windenergie-Institut Magazin, nr 18, February
  10. Howard, R. J. A and Pereira, J. C. F. (2003), 'Modelo de aerogeradores para O caIculo das grandes escalas', VII Cong. de Medinica e Computational, University of Evora, April 2003, pp1177-1186, ISBN 972-778-058-X
  11. Howard, R. J. A and Pourquie, M. (2002), 'Large eddy simulation of an Ahmed reference model', J.Turbulence, 3,012, Institute of Physics pub. Ltd
  12. Johansen, J, Sorensen, N., Michelsen, J. and Schreck, S. (2002), 'Detached eddy simulation of flow around the NREL Phase VI blade', Wind Energy, 5(2/3), 185-197 https://doi.org/10.1002/we.63
  13. Jonkman, J. M. (2003), 'Modeling of the UAE wind turbine for refinement of FAST AD', NREL/TP-500-34755, National Renewable Energy Laboratory, U.S. Department of Energy, December
  14. Kallstrand, B, Bergstrom, H., Hojstrup, J. and Smedman, A (2000), 'Mesoscale wind field modifications over the Baltic sea', Boundary Layer Meteorology, 95, 161-188, Kluwer. 21
  15. Kim, H., Williams, H. and Lyrintzis, A. S. (2002), 'Improved method for rotor wake capturing', AlAA, J. Aircraft, 39(5), 794-803, September-October https://doi.org/10.2514/2.3025
  16. Kini, S. and Conlisk, A. T. (2002), 'Nature of locally steady rotor wakes', AlAA, J. Aircraft, 39(5), 750-758, September-October https://doi.org/10.2514/2.3021
  17. Leishman, J. G, Bhagwat, M. J. and Bagai, A (2002), 'Free-vortex filament methods for the analysis of helicopter rotor wake', AIAA, J. Aircraft, 39(5), 759-775, September-October https://doi.org/10.2514/2.3022
  18. Masson, M., Smaili, A and Leclerc, C. (2001), 'Aerodynamics analysis of HAWTs operating in unsteady conditions', Wind Energy, 4, 1-22 https://doi.org/10.1002/we.43
  19. Piomelli, U. and Balaras, E. (2002), 'Wall-layer models for large eddy simulations', Ann. Rev. Fluid Mech., 34, 349-374 https://doi.org/10.1146/annurev.fluid.34.082901.144919
  20. Sagaut, P. (2004), Large eddy simulation for incompressible flows. An introduction, Springer, Scientific Computing, ISBN 1434-8322
  21. Snel, H. (1998), 'Review of the present status of rotor aerodynamics', Wind Energy, 1, 49-69
  22. Sorensen, N., Michelsen, J. and Schreck, S. (2002), 'Navier-stokes predictions of the NREL phase VI rotor in the NASA Ames 80ft x 120ft wind tunnel', Wind Energy, 5(2/3), 151-169 https://doi.org/10.1002/we.64
  23. Sorensen, J. N. and Shen, W. Z. (2002), 'Numerical modeling of wind turbine wakes', J. Fluids Eng., ASME, 124,393-399 https://doi.org/10.1115/1.1471361
  24. Werner, H. and Wengle, H. (1991), 'Large eddy simulation of turbulent flow over and around a cube in a plate channel', 8th Symposium on Turbulent Shear Flow, Technical University of Munich, Germany, Sept 9-11
  25. Wood, D. (2002), 'The design and analysis of small wind turbines', http://www.wind.newcastle.edu.au/ notes.html, School of Engineering, University of Newcastle, NSW 2308, Australia
  26. Xu, G and Sankar, L. N. (2000), 'Computational study of horizontal axis wind turbines', J. Solar Energy, ASME, 122, 35-39, February https://doi.org/10.1115/1.556278
  27. Xu, G and Sankar, L.N. (2002), 'Development of engineering aerodynamics models using a viscous flow methodology on the NREL Phase VI blade', Wind Energy, 5(2/3),171-183 https://doi.org/10.1002/we.73
  28. Yamaguchi, A, Ishihara, T. and Fujino, Y. (2003), 'Experimental study of the wind flow in a coastal region of Japan', J. Wind Eng. Ind. Aerodyn., 91, 247-264, Elsevier https://doi.org/10.1016/S0167-6105(02)00349-5

Cited by

  1. Effects of spatial and temporal resolution of the turbulent inflow on wind turbine performance estimation vol.19, pp.7, 2016, https://doi.org/10.1002/we.1888
  2. Review of computational fluid dynamics for wind turbine wake aerodynamics vol.14, pp.7, 2011, https://doi.org/10.1002/we.458
  3. Effect of Ice accretion on the aerodynamic characteristics of wind turbine blades vol.32, pp.3, 2021, https://doi.org/10.12989/was.2021.32.3.205
  4. Study on the operation of small rooftop wind turbines and its effect on the wind environment in blocks vol.183, pp.None, 2006, https://doi.org/10.1016/j.renene.2021.11.059