References
- Akcelik, V., Jaramaz, B. and Ghattas G. (2001), 'Nearly orthogonal two-dimensional grid generation with aspect ratio control', J. Comput. Physics, 171, 805-821 https://doi.org/10.1006/jcph.2001.6811
- Beljaars, A.C., Walmsley, J.L. and Taylor, P.A. (1987), 'A mixed spectral finite-difference model for neutrally stratified boundary-layer flow over roughness changes and topography', Boundary-Layer Meteorology, 38, 273-303 https://doi.org/10.1007/BF00122448
- Bergeles, G.C. (1985), 'Numerical computation of turbulent flow around two-dimensional hills', J. Wind Eng. Ind. Aerodyn., 21, 307-321 https://doi.org/10.1016/0167-6105(85)90042-X
- Bitsuamlak, G.T. and Godbole, P.N. (1999), 'Application of cascade-correlation learning network for determination of wind pressure distribution in buildings', Wind Engineering into the 21st Century, Balkema, Rotterdam, 1493-1496
- Bitsuamlak, G.T., Stathopoulos, T. and Bedard, C. (2002), 'Neural network predictions of wind flow over complex terrain', 4th Structural Specialty Conference of the Canadian Society for Civil Engineering, Montreal, Quebec, Canada, ST-026, S-13
- Bitsuamlak, G.T., Stathopoulos, T. and Bedard, C. (2003), 'Numerical evaluation and neural net predictions of wind flow over complex terrain',11th International Conference on Wind Engineering, June 2-5, Lubbock, Texas, USA, 2, 2673-2679
- Bitsuamlak, G.T., Stathopoulos, T. and Bedard, C. (2004), 'Numerical evaluation of wind flow over complex terrain: Review', J. Aerospace Eng., 17(4), 135-145 https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(135)
- Bitsuamlak, G.T. (2004), 'Evaluating the effect of topographic elements on wind flow: A combined numerical simulation-neural network approach', Ph.D. Thesis, Concordia University, Montreal, Canada
- Bradshaw, P. (1976), 'Topics in applied physics-turbulence', 12, Springer-Verlag, NewYork, 2nd Ed
- Carpenter, P. and Locke, N. (1999), 'Investigation of wind speed over multiple two-dimensional hills', J. Wind Eng. Ind. Aerodyn., 83, 109- 120 https://doi.org/10.1016/S0167-6105(99)00065-3
- Chen, Y., Kopp, G.A. and Surry, D. (2003), 'Prediction of pressure coefficients on roofs of low buildings using artificial neural networks', J. Wind Eng. lnd. Aerodyn., 91, 423-441 https://doi.org/10.1016/S0167-6105(02)00381-1
- Chung, J. and Bienkiewicz, B. (2004), 'Numerical simulation of flow past 2D hill and valley', Wind and Struct., An Int. J., 7(1), 1-12 https://doi.org/10.12989/was.2004.7.1.001
- Eca, L. (1996), '2D orthogonal grid generation with boundary point distribution control', J. Comput. Physics, 125, 440-453 https://doi.org/10.1006/jcph.1996.0106
- English, E.C. and Fricke, F.R. (1999), 'The interference index and its prediction using a neural network analysis of wind-tunnel data', J. Wind Eng. Ind. Aerodyn., 83, 567-575 https://doi.org/10.1016/S0167-6105(99)00102-6
- Fahlman, S.E. and Lebiere, C. (1990), 'The cascade correlation learning architecture', D.S. Touretzky. Advances in Neural Information Processing Systems II. Morgan Kaufinann, 524-532
- Horsfield, J.N., Chan, C.M. and Denoon, R.O. (2002), 'Towards sustainable development through innovative engineering', Housing Conference, Wanchai, Hong Kong
- Khanduri, A.C., Bedard, C. and Stathopoulos, T. (1995), 'Neural network modelling of wind-induced interference effects', Proceedings of the Ninth International Conference on Wind Engineering, New Delhi, India, 1341-1352
- Khanduri, A.C., Bedard, C. and Stathopoulos, T. (1997), 'Modelling wind-induced interference effects using backpropagation neural networks', J. Wind Eng. Ind. Aerodyn., 72, 71-79 https://doi.org/10.1016/S0167-6105(97)00259-6
- Launder, B.E. and Spalding, D.B. (1974), 'The numerical computation of turbulent flows', Comput. Methods Appl. Mech. Eng., 3, 269-289 https://doi.org/10.1016/0045-7825(74)90029-2
-
Lun, Y.F., Mochida, A., Yoshino, H., Murakami, S. and Kimura, A. (2003), 'Applicability of linear type revised
$\kappa-\varepsilon$ models to flow over topographic feature', 11th International Conference on Wind Engineering, June 2-5, Lubbock, Texas, USA, 2, 1149-1156 - Lemelin, D.R., Surry, D., and Davenport, A.G. (1988), 'Simple approximations for wind speed-up over hills', J.Wind Eng. Ind. Aerodyn., 28, 117-127 https://doi.org/10.1016/0167-6105(88)90108-0
-
Maurizi, A., (2000), 'Numerical simulation of turbulent flows over 2D valleys using three versions of the
$\kappa-\varepsilon$ closure model', J. Wind Eng. Ind. Aerodyn., 85, 59-73 https://doi.org/10.1016/S0167-6105(99)00121-X - Miller, C.A. (1996), 'Turbulent boundary layers above complex terrain', Ph.D. thesis, University of Western Ontario, London, Ontario, Canada
- NBCC, National Building Code User's Guide-Structural Commentaries (Part 4), Canadian Commission on Building and Fire Codes, National Research Council of Canada, Ottawa (1995)
- Paterson, D.A. and Holmes, J.D. (1993), 'Computation of wind flow over topography', J. Wind Eng. Ind. Aerodyn., 46&47, 471-478 https://doi.org/10.1016/0167-6105(93)90314-E
- Rhie, C.M. and Chow, W.L. (1983), 'Numerical study of the turbulent flows past an airfoil with trailing edge separation', AIAA J., 21, 1525-1532 https://doi.org/10.2514/3.8284
- Sandri, P. and Mehta, K.C. (1995), 'Using backpropagation neural network for predicting wind-induced damage to building', Proceedings of the Ninth International Conference on Wind Engineering, New Delhi, India, 1989-1999
- Spalding D.B. (1972), 'A novel finite-difference formulation for differential expressions involving both first and second order derivatives', Int. J. Num. Methods Eng., 4, 551-559 https://doi.org/10.1002/nme.1620040409
- Taylor, P.A., Walmesly J.L. and Salmon, J.R. (1983), 'A simple model of neutrally stratified boundary-layer flow over real terrain incorporating wave number dependent scaling', Boundary-Layer Meteorol., 26, 169-189 https://doi.org/10.1007/BF00121541
- Van Doormal, J.P and Raithby, G.D. (1984), 'Enhancements of the SIMPLE method for predicting incompressible fluid flows', Numer. Heat Transfer, 7, 147-163 https://doi.org/10.1080/01495728408961817
- Weng, W, Taylor, P.A. and Walmsley, J.L. (2000), 'Guidelines for airflow over complex terrain: Model developments', J. Wind Eng. Ind. Aerodyn., 86, 169-186 https://doi.org/10.1016/S0167-6105(00)00009-X
- Xu, D., Ayotte, A.W. and Taylor, P.A. (1994), 'Development of a non-linear mixed spectral finite difference model for turbulent boundary-layer flow over topography', Boundary-Layer Meteorol., 70, 341-367 https://doi.org/10.1007/BF00713775
Cited by
- CFD simulation of the atmospheric boundary layer: wall function problems vol.41, pp.2, 2007, https://doi.org/10.1016/j.atmosenv.2006.08.019
- An experimental investigation on the aeromechanics and wake interferences of wind turbines sited over complex terrain vol.172, 2018, https://doi.org/10.1016/j.jweia.2017.11.018
- Turbulent Pressure and Velocity Perturbations Induced by Gentle Hills Covered with Sparse and Dense Canopies vol.133, pp.2, 2009, https://doi.org/10.1007/s10546-009-9427-x
- Numerical evaluation of the effect of multiple roughness changes vol.19, pp.6, 2014, https://doi.org/10.12989/was.2014.19.6.585
- CFD simulation of wind flow over natural complex terrain: Case study with validation by field measurements for Ria de Ferrol, Galicia, Spain vol.147, 2015, https://doi.org/10.1016/j.jweia.2015.09.007
- Designing laboratory wind simulations using artificial neural networks vol.120, pp.3-4, 2015, https://doi.org/10.1007/s00704-014-1201-4
- Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard vol.97, pp.5-6, 2009, https://doi.org/10.1016/j.jweia.2009.06.007
- Prediction of wind properties in urban environments using artificial neural network vol.107, pp.3-4, 2012, https://doi.org/10.1007/s00704-011-0506-9
- Wind direction field under the influence of topography: part II: CFD investigations vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.477
- Turbulent Intensities and Velocity Spectra for Bare and Forested Gentle Hills: Flume Experiments vol.129, pp.1, 2008, https://doi.org/10.1007/s10546-008-9308-8
- Modeling the Effect of Topography on Wind Flow Using a Combined Numerical–Neural Network Approach vol.21, pp.6, 2007, https://doi.org/10.1061/(ASCE)0887-3801(2007)21:6(384)
- Dynamic along wind response of tall buildings using Artificial Neural Network pp.1573-7543, 2019, https://doi.org/10.1007/s10586-018-2027-0
- Computing dynamic across-wind response of tall buildings using artificial neural network pp.1573-0484, 2018, https://doi.org/10.1007/s11227-018-2708-8
- Multiobjective Aerodynamic Optimization of Tall Building Openings for Wind-Induced Load Reduction vol.144, pp.10, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002199
- Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility vol.13, pp.1, 2006, https://doi.org/10.12989/was.2010.13.1.021
- A neural network shelter model for small wind turbine siting near single obstacles vol.15, pp.1, 2012, https://doi.org/10.12989/was.2012.15.1.043
- Topographic effects on tornado-like vortex vol.27, pp.2, 2018, https://doi.org/10.12989/was.2018.27.2.123
- Simulation and Analysis of a Turbulent Flow Around a Three-Dimensional Obstacle vol.13, pp.3, 2019, https://doi.org/10.2478/ama-2019-0023
- Numerical modelling of shelter effect of porous wind fences vol.29, pp.5, 2006, https://doi.org/10.12989/was.2019.29.5.313
- Wind field generation for performance-based structural design of transmission lines in a mountainous area vol.31, pp.2, 2020, https://doi.org/10.12989/was.2020.31.2.165