References
- Abdel-Aziz, Y.I. and Karara, H.M. (1971), 'Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry', Proc. of the Symposium on Close-Range Photogrammetry, Falls Church, VA: American Society of Photogrammetry, 1-18
- Antman, S.S. (1995), Nonlinear Problems of Elasticity, Springer-Verlag, New York, USA
- Chen, L., Armstrong, C.W. and Raftopoulos, D.D. (1994), 'An investigation on the accuracy of threedimensional space reconstruction using the direct linear transformation technique', J Biomechanics, 27, 493-500 https://doi.org/10.1016/0021-9290(94)90024-8
- Frisch-Fay, R (1961), 'The analysis of a vertical and a horizontal cantilever under a uniformly distributed load', J Franklin Inst., 271, 192-199 https://doi.org/10.1016/0016-0032(61)90148-X
- Greenhill, A.G (1881), 'Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow', Proc. Camb. Phil. Soc., 4, 65-73
- Haralick, RM. and Shapiro, L.G (1993), Computer and Robot Vision, Vol. 2. Addison-Wesley Publishing Company
- JUIjo, D.L.R, Magluta, C., Roitman, N. and Gonr,:alves, P.R (2005), 'Dynamic analysis of columns under selfweight', 26th Iberian Latin American Congress on Computational Methods in Engineering, XXVI CILAMCE, Brazil, 1-10
- Jurjo, D.L.R (2001), 'Buckling and post-buckling of a heavy column under self-weight', MSc Dissertation, Catholic University, PUC-Rio, Rio de Janeiro, Brazil
- Keller, H.B. (1968), Numerical Methods for Two-point Boundary Value Problems, Blaisdell Publishing Company, Waltham, Mass., USA
- Lee, RK., Wilson, lE and Bolle, N.A. (1993), 'Elastica of cantilevered beams with variable cross sections', Int. J Non-Linear Mech., 28,579-589 https://doi.org/10.1016/0020-7462(93)90049-Q
- Lee, K. (2001), 'Post-buckling of uniform cantilever column under combined load', Int. J Non-Linear Mech., 36, 813-816 https://doi.org/10.1016/S0020-7462(00)00047-0
- Li, Q.S. (2000), 'Exact solutions for buckling of non-uniform columns under axial concentrated and distributed loading', Eur. J Mech. A, 20, 485-500
- Lory, P. (1980), 'Enlarging the domain of convergence for multiple shooting by the homotopy method', Numer. Math., 35, 231-240 https://doi.org/10.1007/BF01396319
- Maretic, P.B. and Atanackovic, T.M. (2001), 'Buckling of colUilln with base attached to elastic half-space', J Eng. Mech., ASCE, 127(3),242-247 https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(242)
- Margusson, A., Ristinmaa, M. and Ljung, C. (2001), 'Behavior of the extensible elastica solution', Int. J Solids Struct., 38, 8441-8457 https://doi.org/10.1016/S0020-7683(01)00089-0
- Pamplona, D., Gonr,:alves, P.B., Davidovitch, M. and Weber, H.I. (2001), 'Finite axisymmetric deformations of a initially stressed fluid-filled cylindricalmembrane', Int. J Solids Struct., 38, 2033-2047 https://doi.org/10.1016/S0020-7683(00)00151-7
- Pamplona, D.C., Gonr,:alves, P.B. and Lopes, S.R.X. (2006), 'Finite deformations of cylindrical membrane under internal pressure', Int. J Mech. Sci., 48, 683-696 https://doi.org/10.1016/j.ijmecsci.2005.12.007
- Press, W.H., Flannery, B.P., Teukolsky, SA and Vetterling, W.T. (1986), Numerical Recipes. Cambridge University Press, UK
- Rao, G. V and Raju, P.C. (1977), 'Post-buckling of unifonn cantilever column - Galerkin finite element solution', Eng. Fract. Mech., 1, 1-4
- Schmidt, R. and DaDeppo, DA (1970), 'Large deflection of heavy cantilever beams and columns', Quart. Appl. Math., 28, 441-444 https://doi.org/10.1090/qam/99779
- Seide, P. (1984), 'Large deflection of a simply supported beam subjected to moment at one end', J Appl. Mech., ASME, 51, 519-525 https://doi.org/10.1115/1.3167667
- Stuart, CA (2001), 'Buckling of a heavy tapered rod', J Math. Pures Appl., 80, 281-337 https://doi.org/10.1016/S0021-7824(00)01196-X
- Teng, J.G and Yao, J. (2000), 'Self-weight buckling of FRP tubes filled with wet concrete', Thin-Walled Structures, 38, 337-353 https://doi.org/10.1016/S0263-8231(00)00041-0
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, Mc Graw-Hill, New York, USA
- Tsai, R.Y. (1986), 'An efficient and accurate camera calibration technique for 3D machine vision', Proc. of IEEE Conf on Computer Vision and Pattern Recognition, Miami Beach, Florida, USA, 364-374
- Virgin, L.N. and Plaut, R.H. (2004), 'Postbuckling and vibration of linearly elastic and softening columns under self-weight', Int. J Solids Struct., 41, 4989-5001 https://doi.org/10.1016/j.ijsolstr.2004.03.023
- Wang, c.Y (1996), 'Global buckling load of a nonlinearly elastic bar', Acta Mech., 119, 229-234 https://doi.org/10.1007/BF01274250
- Wolde-Tinsae, A.M. and Foadian, H. (1989), 'Asymmetrical buckling of prestressed tapered arches', J Eng. Mech., ASCE, 115, 2020-2034 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:9(2020)
Cited by
- Experimental investigation of the large amplitude vibrations of a thin-walled column under self-weight vol.46, pp.6, 2013, https://doi.org/10.12989/sem.2013.46.6.869
- Analysis of the structural behavior of a membrane using digital image processing vol.54-55, 2015, https://doi.org/10.1016/j.ymssp.2014.08.010
- Large oscillations of beams and columns including self-weight vol.43, pp.8, 2008, https://doi.org/10.1016/j.ijnonlinmec.2008.04.007
- A Seminalytical Approach to Large Deflections in Compliant Beams under Point Load vol.2009, 2009, https://doi.org/10.1155/2009/910896
- Buckling Behavior of Horizontal Hydraulic Cylinder Articulated at Both Supports vol.20, pp.3, 2006, https://doi.org/10.1142/s0219455420500339