DOI QR코드

DOI QR Code

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z. (Department of Civil Engineering, Faculty of Engineering, Hashemite University) ;
  • Othman, Ra'ad A. (Department of Civil Engineering, Faculty of Engineering, Baghdad University) ;
  • Shatnawi, Anis S. (Department of Civil Engineering, Faculty of Engineering and Technology, The University of Jordan)
  • Received : 2005.12.08
  • Accepted : 2006.07.18
  • Published : 2006.12.20

Abstract

In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.

Keywords

References

  1. ADINA (2000), 'ADINA user interface (AUI) users guide', ADINA R and D, Inc., Watertown, MA
  2. Argyris, J.H. and Symeonidis, S. (1981), 'Nonlinear finite-element analysis of elastic systems under nonconservative loading-natural formulation, Part 1: Quasistatic problems', Camp. Meths. Appl. Mech. Eng., 26, 180-185
  3. Bathe, KJ. and Bolourchi, S. (1979), 'Large displacement analysis of three-dimensional beam structures', Int. J Num. Meth. Eng., 14, 961-986 https://doi.org/10.1002/nme.1620140703
  4. Bona, F. and Zelenika, S. (1997), 'A generalized elastica-type approach to the analysis of large displacements of spring-strips', Proc. Inst. Mech. Eng. Part C, 21, 509-517
  5. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis, Wiley & Sons
  6. Crisfield, M.A. (1991), Non-linear Finite Element Analysis of Solids and Structures, Volume 1: Essentials, NY, Wiley & Sons
  7. Crisfield, M.A. (1997), Non-linear Finite Element Analysis of Solids and Structures. Volume II: Advanced Topics, NY, Wiley & Sons
  8. Chucheepsakul, S., Buncharoen, S. and Wang, C.M. (1994), 'Large deflection of beams under moment gradient', J Eng. Mech., ASCE, 120, 1848 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:9(1848)
  9. Chucheepsakul, S. and Huang, T. (1997), 'Finite element solution of variable-are-length beams under a point load', J Struct. Eng., 123, 968-970 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(968)
  10. Chucheepsakul, S., Wang, C.M., He, X.Q. and Monprapussom, T. (1999), 'Double curvature bending of variable-are-length elastica', J Appl. Mech., 66, 87-94 https://doi.org/10.1115/1.2789173
  11. Coffin, D.W. and Bloom, F. (1999), 'Elastica solution for the hygrothermal buckling of a beam', Int. J Non-Linear Mech., 34, 935 https://doi.org/10.1016/S0020-7462(98)00067-5
  12. Dado, M., AI-Sadder, S. and Abuzeid, O. (2004), 'Post-buckling behavior of two elastica columns linked with a rotational spring', Int. J Non-Linear Mech., 39, 1579-1587 https://doi.org/10.1016/j.ijnonlinmec.2004.01.003
  13. Gerald, C.E. and Wheatley, P.O. (1970), Applied Numerical Analysis Reading Mass, Addison Wesley
  14. Golley, RW. (1984), 'The finite element solution of a class of elastica problems', Camp. Meth. Appl. Mech. Eng., 46, 159-168 https://doi.org/10.1016/0045-7825(84)90058-6
  15. Golley, B.W. (1997), 'The solution of open and closed elasticas using intrinsic coordinate finite elements', Compo Meth. Appl. Mech. Eng., 146, 127-134 https://doi.org/10.1016/S0045-7825(96)01231-5
  16. Hinton, E. (1992), 'NAFEMS: Introduction to nonlinear finite element analysis', NAFEMS Ltd
  17. Kassimali, A. and Abbasnia, R. (1991), 'Large deformation analysis of elastic space frames', J Strnct. Eng., 117(7), 2069-2087 https://doi.org/10.1061/(ASCE)0733-9445(1991)117:7(2069)
  18. Katsikadelis, J.T. and Tsiatas, GC. (2003), 'Large def lection analysis of beams with variable stiffuess', Acta Mechanica, 164, 1-13 https://doi.org/10.1007/s00707-003-0015-8
  19. Kooi, RW and Kuipers, M. (1984), 'A unilateral contact problem with the heavy elastica', Int. J Non-Linear Mech., 19, 309-321 https://doi.org/10.1016/0020-7462(84)90059-3
  20. Kooi, RW (1985), 'A unilateral contact problem with the heavy elastica solve by use of finite element', Int. J Non-Linear Mech., 21, 95-103
  21. Lee, B.K. and Oh, SJ. (2000), 'Elastica and buckling load of simple tapered columns with constant volume', Int. J Solids Struct., 37, 2507-2518 https://doi.org/10.1016/S0020-7683(99)00007-4
  22. Lee, K. (2001), 'Post-buckling of uniform cantilever column under a combined load', Int. J Mech. Non-Linear Mech., 36, 813-816 https://doi.org/10.1016/S0020-7462(00)00047-0
  23. Mau, S.T. (1990), 'Elastica solution of braced struts', J Eng. Mech., 116,688 https://doi.org/10.1061/(ASCE)0733-9399(1990)116:3(688)
  24. Mattiasson, K (1981), 'Numerical results from large deflection beam and frame problems analysis by means of elliptic integrals', Int. J Num. Meth. Eng., 16, 145
  25. Neuenhofer, A. and Filippou, EC. (1997), 'Evaluation of nonlinear frame finite-element models', J Strnct. Eng., 123, 958-966 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
  26. Neuenhofer, A. and Filippou, F.C. (1998), 'Geometrically nonlinear flexibility-based frame finite element', J Strnct. Eng., 124, 704-711 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(704)
  27. Oden, J.T. (1972), Finite Elements of Nonlinear Continua, NY, McGraw-Hill
  28. Ohtsuki, A. and Ellyin, E (2001), 'Analytical approach to large deformation problems of frame structures (in case of a square frame with rigid joints)', JSME Int. J, 44, 89-93 https://doi.org/10.1299/jsmea.44.89
  29. Gran, C. and Kassimali, A. (1976), 'Large defonnations of framed structures under static and dynamic loads', Compo Strnct., 6, 539-547 https://doi.org/10.1016/0045-7949(76)90050-X
  30. Saje, M. and Srpcic, S. (1985), 'Large deformations of in-plane beams', Int. J Solids Strnct., 21, 1181 https://doi.org/10.1016/0020-7683(85)90003-4
  31. Schmidt, W.F. (1977), 'Nonlinear bending of beams using the finite element method', Int. J Compo Struct., 8, 153
  32. Srpcic, S. and Saje, M. (1986), 'Large deformations of thin curved plane beam of constant initial curvature', Int. J Mech. Sci., 28, 275 https://doi.org/10.1016/0020-7403(86)90041-X
  33. Surana, KS. (1983), 'Geometrically non-linear formulation for two dimensional curved beam elements', Comput. Struct., 17, 105-114 https://doi.org/10.1016/0045-7949(83)90035-4
  34. Taylor, R.L., Filippou, EC., Saritas, A. and Auricchio, E (2003), 'A mixed finite element method for beam and frame problems', Comput. Mech., 31, 192-203 https://doi.org/10.1007/s00466-003-0410-y
  35. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, NY, McGraw-Hill
  36. Wang, C.M., Lam, KY., He, X.Q. and Chucheepsakul, S. (1997), 'Large defonnation of an end supported beam subjected to a point load', Int. J Non-Linear Mech., 32, 63-72 https://doi.org/10.1016/S0020-7462(96)00017-0
  37. Wang, C.Y. and Watson, L.T. (1980), 'On large deformations of C-shaped springs', Int. J Mech. Sci., 22, 395-400 https://doi.org/10.1016/0020-7403(80)90009-0
  38. Wang, C.Y. (1981), 'Large deformations of a heavy cantilever', Quart. Appl. Math., 39, 261-273 https://doi.org/10.1090/qam/625473
  39. Watson, L.T. and Wang, C.Y. (1981), 'Hanging an elastic ring', Int. J Mech. Sci., 23, 161-167 https://doi.org/10.1016/0020-7403(81)90027-8
  40. Wang, C.Y. and Watson, L.T. (1982), 'The elastic catenary', Int. J Mech. Sci., 24, 349-357 https://doi.org/10.1016/0020-7403(82)90068-6
  41. Watson, L.T. and Wang, C.Y. (1983), 'Periodically supported heavy elastica sheet', J Eng. Mech. Div., ASCE, 109,811 https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(811)
  42. Williams, EW (1964), 'An approach to the non-linear behavior of the members of a rigid jointed plane framework with finite deflections', Quart. J Mech. Appl. Math., 17,451-469 https://doi.org/10.1093/qjmam/17.4.451
  43. Yang, T.Y. (1973), 'Matrix displacement solution to elastica problems of beams and frames', Int. J Solids Struct., 9, 829-841 https://doi.org/10.1016/0020-7683(73)90006-1
  44. Yang, Y.R and Kuo, S.R. (1994), Theory and Analysis of Nonlinear Framed Strnctures, Prentice Hall, New York

Cited by

  1. Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams vol.15, pp.3, 2015, https://doi.org/10.12989/cac.2015.15.3.373
  2. Free vibration analysis of rotating tapered blades using Fourier-p superelement vol.27, pp.2, 2006, https://doi.org/10.12989/sem.2007.27.2.243
  3. Minimum Diameter of Optimally Located Damping Wire to Maximize the Fundamental Frequencies of Rotating Blade Using Timoshenko Beam Theory vol.21, pp.7, 2021, https://doi.org/10.1142/s0219455421500905