References
- Adeli, H. (2001), 'Neural networks in civil engineering: 1989-2000', Computer-Aided Civil and Infrastructure Engineering, 16, 126-142 https://doi.org/10.1111/0885-9507.00219
- Amerijckx, C., Verleysen, M., Thissen, P. and Legat, J.D. (1998), 'Image compression by self organized kohonen map', IEEE Trans on Neural Networks, 9(3), 503-507 https://doi.org/10.1109/72.668891
- Cevik, M., Ozkaya, E. and Pakdemirli, M. (2002), 'Natural frequencies of suspension bridges: An artificial neural network approach', J Sound Vib., 257(3), 596-604 https://doi.org/10.1006/jsvi.2001.4237
- Cheng, Y.I. (1999), 'Design of high-performance concrete mixtures using neural networks and nonlinear programming', J Comput. Civil Eng., ASCE, 13(1), 36-42 https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
- Demuth, H. and Beale, M. (2003), Manual of Neural Network Tool Box - For Use with MATLAB, MATLAB User's Guide, Version 4, the Math Works Inc
- Garrett, J.H. (1994), 'Where and why artificial neural networks are applicable in civil engineering', J Camp. Civil Eng., ASCE, [special issue] 8(2), 29-30
- Hornik, K., Stinchcomb, E.M. and White, H. (1989), 'Multilayer feed-forward networks are universal approximators', Neural Netw, 2, 359-366 https://doi.org/10.1016/0893-6080(89)90020-8
- Hsu, D.S. and Tsai, C.H. (1997), 'Reinforced concrete structural damage diagnosis by using artificial neural network', IEEE
- Jerzy, H. and Krzysztof, S. (2005), 'New technique of nondestructive assessment of concrete strength using artificial intelligence', NDT&E Int., 38, 251-259 https://doi.org/10.1016/j.ndteint.2004.08.002
- Johnson, V.D. (1980), Essentials a/Bridge Engineering, 3rd ed., Oxford & IBK Publications Co., New Delhi
- Krishna, N.M. and Gangadhran, D. (1999), 'Analysis of infilled frames', J Struct. Eng., ASCE, 26, 173-178
- Muhammad Hadi, N.S. (2003), 'Neural networks applications in concrete structures', ACI J Comput. Struct., 81, 373-381 https://doi.org/10.1016/S0045-7949(02)00451-0
- Sirca, GF. and Adeli, H. (2004), 'Counter propagation neural network model for steel girder bridge structures', J Bridge Eng., ASCE, 9(1), 55-65 https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(55)
- Taha, M.M.R., Noureldin, A., El-Sheimy, N. and Shrive, N.G (2003), 'Artificial neural networks for predicting creep with an example application to structural masonry', Canadian Journal of Civil Engineering, 30(3), 523-532 https://doi.org/10.1139/l03-003
Cited by
- Prediction of moments in composite frames considering cracking and time effects using neural network models vol.39, pp.2, 2006, https://doi.org/10.12989/sem.2011.39.2.267
- Neural networks for the rapid seismic assessment of existing moment-frame RC buildings vol.67, pp.None, 2006, https://doi.org/10.1016/j.ijdrr.2021.102677