References
- Adali, S. (1984), 'Design of shear defonnable antisymmetric angle-ply laminates to maximize the fundamental frequency and the frequency seperation', Comput. Struct., 2, 349-369 https://doi.org/10.1016/0263-8223(84)90005-9
- Adali, S. and Verijenko, V.E. (2001), 'Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations', Compos. Struct., 54,131-138 https://doi.org/10.1016/S0263-8223(01)00080-0
- Ashour, A.S. (2005), 'Vibration of elastically restrained cross-ply laminated plates with variable thickness', J Sound Vib., 288, 33-42 https://doi.org/10.1016/j.jsv.2004.12.012
- Aydogdu, M. and Timarci, T. (2003), 'Vibration analysis of cross-ply laminated square plates with general boundary conditions', Composites Science and Technology, 63, 1061-1070 https://doi.org/10.1016/S0266-3538(03)00016-2
- Bert, C.W, (1977), 'Optimal design of a composite-material plate to maximize its fundamental frequency', J Sound Vib., 50 (2), 229-237 https://doi.org/10.1016/0022-460X(77)90357-1
- Bert, C.W, (1978), 'Design of clamped composite-material plates to maximize fundamental frequency', Trans. Am. Soc. Mech. Eng. J Mech. Design, 100,274-278
- Chaudhuri, R.A., Balaraman, K. and Kunukkasseril, V.X. (2005), 'A combined theoretical and experimental investigation on free vibration of thin symmetrically laminated anisotropic plates', Compos. Struct., 67, 85-97 https://doi.org/10.1016/j.compstruct.2004.01.001
- Chen, W.Q. and Lu, C.F. (2005), '3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported', Compos. Struct., 69, 77-87 https://doi.org/10.1016/j.compstruct.2004.05.015
- Correia, V.M.F., Soares, C.M.M. and Soares, C.A.M. (1997), 'Higher order models on the eigenfrequency analysis and optimal design of laminated composite structures', Compos. Struct., 39(3-4), 237-253 https://doi.org/10.1016/S0263-8223(97)00118-9
- DuffY, KJ. and Adali, S. (1991a), 'Optimal fibre orientation of antisymmetric hybrid laminates for maximum fundamental frequency and frequency separation', J Sound Vib., 146(2), 181-190 https://doi.org/10.1016/0022-460X(91)90757-B
- DuffY, KJ. and Adali, S. (1991 b), 'Maximum frequency design of prestressed symmetic, cross-ply laminates of hybrid construction', Advances in Design Automation, ASME, 2, 477-484
- Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), 'Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions', Comput. Meth. Appl. Mech. Eng., 194,4265-4278 https://doi.org/10.1016/j.cma.2004.11.004
- Fukunaga, E., Sekine, H. and Sato, M. (1994), 'Optimal design of symmetric laminated plates for fundamental frequency', J Sound Vib., 171(2),219-229 https://doi.org/10.1006/jsvi.1994.1115
- Gonnan, D.J. and Ding, W, (2003), 'Accurate free vibration analysis of completely free symmetric cross-ply rectangular laminated plates', Compos. Struct., 60, 359-365 https://doi.org/10.1016/S0263-8223(02)00337-9
- Grenestedt, J.L. (1989), 'Layout optimization and sensitivity analysis of the fundamental eigenfrequency of composite plates', Comput. Struct., 12, 193-209 https://doi.org/10.1016/0263-8223(89)90022-6
- Haldar, S. and Sheikh, A.E. (2005), 'Free vibration analysis of isotropic and composite folded plates using a shear flexible element', Finite Elemens in Analysis and Design, 42, 208-226 https://doi.org/10.1016/j.finel.2005.06.003
- Harras, B., Benamar, R. and White, R.G. (2002), 'Investigation of non-linear free vibrations of fully clamped symmetrically laminated carbon-fibre-reinforced PEEK (AS4/APC2) rectangular composite panels', Composites Science and Technology, 62, 719-727 https://doi.org/10.1016/S0266-3538(01)00133-6
- Hu, H.T. and Tsai, J.Y. (1999), 'Maximization of the fundamental frequencies of laminated cylindrical shells with respect to fiber orientations', J Sound Vib., 225(4), 723-740 https://doi.org/10.1006/jsvi.1999.2261
- Hu, H.T. and Ou, S.C. (2001), 'Maximization of the fundamental frequencies of laminated truncated conical shells with respect to fiber orientations', Comput. Strnct., 52(3-4), 265-275
- Hu, X.X., Sakiyama, T., Lim, C.W, Xiong, Y, Matsuda, H. and Morita, C. (2004), 'Vibration of angle-ply laminated plates with twist by Rayleigh-Ritz procedure', Comput. Meth. Appl. Mech. Eng., 193, 805-823 https://doi.org/10.1016/j.cma.2003.08.003
- Kabir, H.RH. (2004), 'On free vibration response and mode shapes of arbitrarily laminated rectangular plates', Compos. Struct., 65, 13-27 https://doi.org/10.1016/j.compstruct.2003.10.001
- Kam, T.Y and Lai, EM. (1995), 'Design of laminated composite plates for optimal dynamic characteristics using a constrained global optimization technique', Comput. Meth. Appl. Mech. Eng., 120(3-4), 389-402 https://doi.org/10.1016/0045-7825(94)00063-S
- Kant, T. and Swaminathan, K (2001), 'Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory', Compos. Struct., 53, 73-85 https://doi.org/10.1016/S0263-8223(00)00180-X
- Lanhe, W, Hua, L. and Daobin, W (2005), 'Vibration analysis of generally laminated composite plates by the moving least squares differential quadrature method', Compos. Struct., 68, 319-330 https://doi.org/10.1016/j.compstruct.2004.03.025
- Leung, A.YT., Xiao, C., Zhu, R and Yuan, S. (2005), 'Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p-element', Compos. Struct., 68,167-175 https://doi.org/10.1016/j.compstruct.2004.03.011
- Liew, KM., Huang, YQ. and Reddy, J.N. (2003), 'Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method', Comput. Meth. Appl. Mech. Eng., 192, 2203-2222 https://doi.org/10.1016/S0045-7825(03)00238-X
- Matsunaga, H. (2002), 'Vibration of cross-ply laminated composite plates subjected to initial in-plane stresses', Thin-Walled Structures, 40, 557-571 https://doi.org/10.1016/S0263-8231(02)00012-5
- Messina, A (2002), 'Free vibrations of multilayered plates based on a mixed variational approach in conjuction with global piecewise-smooth functions', J Sound Vib., 256(1), 103-129 https://doi.org/10.1006/jsvi.2001.4202
- Messina, A and Soldatos, K.P. (2002), 'A general vibration model of angle-ply laminated plates that accounts for the continuity ofinterlaminar stresses', Int. J Solids Struct., 39, 617-635 https://doi.org/10.1016/S0020-7683(01)00169-X
- Nallim, L.G, Martinez, S.O. and Grossi, RO. (2005), 'Statical and dynamical behaviour of thin fibre reinforced composite laminates with different shapes', Comput. Meth. Appl. Mech. Eng., 194,1797-1822 https://doi.org/10.1016/j.cma.2004.06.009
- Narita, Y (2003), 'Layerwise optimization for the maximum fundamental frequency of laminated composite plates', J Sound Vib., 263,1005-1016 https://doi.org/10.1016/S0022-460X(03)00270-0
- Narita, Y (2006), 'Maximum frequency design of laminated plates with mixed boundary conditions', Int. J Solids Struct., 43(14-15), 4342-4356 https://doi.org/10.1016/j.ijsolstr.2005.06.104
- Narita, Y and Hodgkinson, lM. (2005), 'Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates', Compos. Struct., 69, 127-135 https://doi.org/10.1016/j.compstruct.2004.05.021
- Numayr, KS., Haddad, RH. and Haddad, M.A. (2004), 'Free vibration of composite plates using the finite difference method', Thin-Walled Structures, 42, 399-414 https://doi.org/10.1016/j.tws.2003.07.001
- Onkar, AK and Yadav, D. (2004), 'Non-linear free vibration of laminated composite plate with random material properties', J Sound Vib., 272, 627-641 https://doi.org/10.1016/S0022-460X(03)00387-0
- Patel, RP., Gupta, S.S. and Sarda, R. (2005), 'Free flexural behavior of bimodular material angle-ply laminated composite plates', J. Sound Vib., 286, 167-186 https://doi.org/10.1016/j.jsv.2004.10.004
- Rao, M.K. and Desai, Y.M. (2004), 'Analytical solutions for vibrations of laminated and sandwich plates using mixed theory', Compos. Struct., 63, 361-373 https://doi.org/10.1016/S0263-8223(03)00185-5
- Reiss, R and Ramachandran, S. (1987), 'Maximum frequency design of symmetric angle-ply laminates', Comput. Struct., 4: 1476-1487. New York. Elsevier Applied Science
- Setoodh, AR. and Karami, G (2004), 'Static, free vibration and buckling analysis of anisotropic thick laminated composite plates on distributed and point elastic supports using a 3-D layer-wise FEM', Eng. Struct., 26, 211-220 https://doi.org/10.1016/j.engstruct.2003.09.009
- Shi, J.W, Nakatani, A. and Kitagawa, H. (2004), 'Vibration analysis of fully clamped arbitrarily laminated plate', Compos. Struct., 63, 115-122 https://doi.org/10.1016/S0263-8223(03)00138-7
- Sivakumar, K, Iyengar, N.G.R and Kalyanmoy, D. (1999), 'Optimum design of laminated composite plates undergoing large amplitude oscillations', Applied Composite Materials, 6, 87-98 https://doi.org/10.1023/A:1008896918956
- Wang, lW., Liew, K.M., Tan, MJ. and Rajendran, S. (2002), 'Analysis of rectangular laminated composite plates via FSDT meshless method', Int. J Mech. Sci., 44, 1275-1293 https://doi.org/10.1016/S0020-7403(02)00057-7
- Wang, S. and Zhang, Y. (2005), 'Vibration analysis of rectangular composite laminated plates using layerwise Bspline finite strip method', Compos. Struct., 68, 349-358 https://doi.org/10.1016/j.compstruct.2004.04.001
Cited by
- Effects of nonuniform boundary conditions on the buckling load optimization of laminated composite plates vol.30, pp.3, 2009, https://doi.org/10.1016/j.matdes.2008.05.012
- Maximization of Fundamental Frequencies of Axially Compressed Laminated Plates Against Fiber Orientation vol.47, pp.4, 2009, https://doi.org/10.2514/1.36555
- Optimum design of laminated composite plates to maximize buckling load using MFD method vol.45, pp.7-8, 2007, https://doi.org/10.1016/j.tws.2007.06.002
- Frequency optimization of laminated composite angle-ply plates with circular hole vol.29, pp.8, 2008, https://doi.org/10.1016/j.matdes.2008.03.002
- Multiobjective optimization of laminated composite cylindrical shells for maximum frequency and buckling load vol.30, pp.7, 2009, https://doi.org/10.1016/j.matdes.2008.09.020
- Strength design criterion for asymmetrically reinforced RC circular cross-sections in bending vol.11, pp.6, 2013, https://doi.org/10.12989/cac.2013.11.6.571
- Strength Optimization of Laminated Composite Plates vol.42, pp.17, 2008, https://doi.org/10.1177/0021998308093368
- Maximization of fundamental frequency of axially compressed laminated curved panels with cutouts vol.47, 2013, https://doi.org/10.1016/j.compositesb.2012.10.047
- Frequency optimization of laminated skew plates vol.30, pp.8, 2009, https://doi.org/10.1016/j.matdes.2008.11.007
- Multiobjective optimization of angle-ply laminated plates for maximum buckling load vol.46, pp.3, 2010, https://doi.org/10.1016/j.finel.2009.10.003
- Thermal buckling load optimization of laminated composite plates vol.46, pp.6, 2008, https://doi.org/10.1016/j.tws.2007.11.005
- Frequency optimization of laminated general quadrilateral and trapezoidal thin plates vol.30, pp.9, 2009, https://doi.org/10.1016/j.matdes.2009.02.014
- A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for vol.7, pp.3, 2006, https://doi.org/10.12989/scs.2007.7.3.253
- Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM vol.31, pp.4, 2006, https://doi.org/10.12989/sem.2009.31.4.407
- Effect of Rectangular/Circular Cutouts on Thermal Buckling Load Optimization of Angle-Ply Laminated Thin Plates vol.17, pp.2, 2006, https://doi.org/10.1515/secm.2010.17.2.93