DOI QR코드

DOI QR Code

Optimal design of laminated composite plates to maximise fundamental frequency using MFD method

  • Topal, Umut (Karadeniz Technical University, Department of Civil Engineering) ;
  • Uzman, Umit (Karadeniz Technical University, Department of Civil Engineering)
  • Received : 2006.01.16
  • Accepted : 2006.07.02
  • Published : 2006.11.10

Abstract

This paper deals with optimal fibre orientations of symmetrically laminated fibre reinforced composite structures for maximising the fundamental frequency of small-amplitude. A set of fiber orientation angles in the layers are considered as design variable. The Modified Feasible Direction method is used in order to obtain the optimal designs. The effects of number of layers, boundary conditions, laminate thicknesses, aspect ratios and in-plane loads on the optimal designs are studied.

Keywords

References

  1. Adali, S. (1984), 'Design of shear defonnable antisymmetric angle-ply laminates to maximize the fundamental frequency and the frequency seperation', Comput. Struct., 2, 349-369 https://doi.org/10.1016/0263-8223(84)90005-9
  2. Adali, S. and Verijenko, V.E. (2001), 'Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations', Compos. Struct., 54,131-138 https://doi.org/10.1016/S0263-8223(01)00080-0
  3. Ashour, A.S. (2005), 'Vibration of elastically restrained cross-ply laminated plates with variable thickness', J Sound Vib., 288, 33-42 https://doi.org/10.1016/j.jsv.2004.12.012
  4. Aydogdu, M. and Timarci, T. (2003), 'Vibration analysis of cross-ply laminated square plates with general boundary conditions', Composites Science and Technology, 63, 1061-1070 https://doi.org/10.1016/S0266-3538(03)00016-2
  5. Bert, C.W, (1977), 'Optimal design of a composite-material plate to maximize its fundamental frequency', J Sound Vib., 50 (2), 229-237 https://doi.org/10.1016/0022-460X(77)90357-1
  6. Bert, C.W, (1978), 'Design of clamped composite-material plates to maximize fundamental frequency', Trans. Am. Soc. Mech. Eng. J Mech. Design, 100,274-278
  7. Chaudhuri, R.A., Balaraman, K. and Kunukkasseril, V.X. (2005), 'A combined theoretical and experimental investigation on free vibration of thin symmetrically laminated anisotropic plates', Compos. Struct., 67, 85-97 https://doi.org/10.1016/j.compstruct.2004.01.001
  8. Chen, W.Q. and Lu, C.F. (2005), '3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported', Compos. Struct., 69, 77-87 https://doi.org/10.1016/j.compstruct.2004.05.015
  9. Correia, V.M.F., Soares, C.M.M. and Soares, C.A.M. (1997), 'Higher order models on the eigenfrequency analysis and optimal design of laminated composite structures', Compos. Struct., 39(3-4), 237-253 https://doi.org/10.1016/S0263-8223(97)00118-9
  10. DuffY, KJ. and Adali, S. (1991a), 'Optimal fibre orientation of antisymmetric hybrid laminates for maximum fundamental frequency and frequency separation', J Sound Vib., 146(2), 181-190 https://doi.org/10.1016/0022-460X(91)90757-B
  11. DuffY, KJ. and Adali, S. (1991 b), 'Maximum frequency design of prestressed symmetic, cross-ply laminates of hybrid construction', Advances in Design Automation, ASME, 2, 477-484
  12. Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), 'Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions', Comput. Meth. Appl. Mech. Eng., 194,4265-4278 https://doi.org/10.1016/j.cma.2004.11.004
  13. Fukunaga, E., Sekine, H. and Sato, M. (1994), 'Optimal design of symmetric laminated plates for fundamental frequency', J Sound Vib., 171(2),219-229 https://doi.org/10.1006/jsvi.1994.1115
  14. Gonnan, D.J. and Ding, W, (2003), 'Accurate free vibration analysis of completely free symmetric cross-ply rectangular laminated plates', Compos. Struct., 60, 359-365 https://doi.org/10.1016/S0263-8223(02)00337-9
  15. Grenestedt, J.L. (1989), 'Layout optimization and sensitivity analysis of the fundamental eigenfrequency of composite plates', Comput. Struct., 12, 193-209 https://doi.org/10.1016/0263-8223(89)90022-6
  16. Haldar, S. and Sheikh, A.E. (2005), 'Free vibration analysis of isotropic and composite folded plates using a shear flexible element', Finite Elemens in Analysis and Design, 42, 208-226 https://doi.org/10.1016/j.finel.2005.06.003
  17. Harras, B., Benamar, R. and White, R.G. (2002), 'Investigation of non-linear free vibrations of fully clamped symmetrically laminated carbon-fibre-reinforced PEEK (AS4/APC2) rectangular composite panels', Composites Science and Technology, 62, 719-727 https://doi.org/10.1016/S0266-3538(01)00133-6
  18. Hu, H.T. and Tsai, J.Y. (1999), 'Maximization of the fundamental frequencies of laminated cylindrical shells with respect to fiber orientations', J Sound Vib., 225(4), 723-740 https://doi.org/10.1006/jsvi.1999.2261
  19. Hu, H.T. and Ou, S.C. (2001), 'Maximization of the fundamental frequencies of laminated truncated conical shells with respect to fiber orientations', Comput. Strnct., 52(3-4), 265-275
  20. Hu, X.X., Sakiyama, T., Lim, C.W, Xiong, Y, Matsuda, H. and Morita, C. (2004), 'Vibration of angle-ply laminated plates with twist by Rayleigh-Ritz procedure', Comput. Meth. Appl. Mech. Eng., 193, 805-823 https://doi.org/10.1016/j.cma.2003.08.003
  21. Kabir, H.RH. (2004), 'On free vibration response and mode shapes of arbitrarily laminated rectangular plates', Compos. Struct., 65, 13-27 https://doi.org/10.1016/j.compstruct.2003.10.001
  22. Kam, T.Y and Lai, EM. (1995), 'Design of laminated composite plates for optimal dynamic characteristics using a constrained global optimization technique', Comput. Meth. Appl. Mech. Eng., 120(3-4), 389-402 https://doi.org/10.1016/0045-7825(94)00063-S
  23. Kant, T. and Swaminathan, K (2001), 'Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory', Compos. Struct., 53, 73-85 https://doi.org/10.1016/S0263-8223(00)00180-X
  24. Lanhe, W, Hua, L. and Daobin, W (2005), 'Vibration analysis of generally laminated composite plates by the moving least squares differential quadrature method', Compos. Struct., 68, 319-330 https://doi.org/10.1016/j.compstruct.2004.03.025
  25. Leung, A.YT., Xiao, C., Zhu, R and Yuan, S. (2005), 'Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p-element', Compos. Struct., 68,167-175 https://doi.org/10.1016/j.compstruct.2004.03.011
  26. Liew, KM., Huang, YQ. and Reddy, J.N. (2003), 'Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method', Comput. Meth. Appl. Mech. Eng., 192, 2203-2222 https://doi.org/10.1016/S0045-7825(03)00238-X
  27. Matsunaga, H. (2002), 'Vibration of cross-ply laminated composite plates subjected to initial in-plane stresses', Thin-Walled Structures, 40, 557-571 https://doi.org/10.1016/S0263-8231(02)00012-5
  28. Messina, A (2002), 'Free vibrations of multilayered plates based on a mixed variational approach in conjuction with global piecewise-smooth functions', J Sound Vib., 256(1), 103-129 https://doi.org/10.1006/jsvi.2001.4202
  29. Messina, A and Soldatos, K.P. (2002), 'A general vibration model of angle-ply laminated plates that accounts for the continuity ofinterlaminar stresses', Int. J Solids Struct., 39, 617-635 https://doi.org/10.1016/S0020-7683(01)00169-X
  30. Nallim, L.G, Martinez, S.O. and Grossi, RO. (2005), 'Statical and dynamical behaviour of thin fibre reinforced composite laminates with different shapes', Comput. Meth. Appl. Mech. Eng., 194,1797-1822 https://doi.org/10.1016/j.cma.2004.06.009
  31. Narita, Y (2003), 'Layerwise optimization for the maximum fundamental frequency of laminated composite plates', J Sound Vib., 263,1005-1016 https://doi.org/10.1016/S0022-460X(03)00270-0
  32. Narita, Y (2006), 'Maximum frequency design of laminated plates with mixed boundary conditions', Int. J Solids Struct., 43(14-15), 4342-4356 https://doi.org/10.1016/j.ijsolstr.2005.06.104
  33. Narita, Y and Hodgkinson, lM. (2005), 'Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates', Compos. Struct., 69, 127-135 https://doi.org/10.1016/j.compstruct.2004.05.021
  34. Numayr, KS., Haddad, RH. and Haddad, M.A. (2004), 'Free vibration of composite plates using the finite difference method', Thin-Walled Structures, 42, 399-414 https://doi.org/10.1016/j.tws.2003.07.001
  35. Onkar, AK and Yadav, D. (2004), 'Non-linear free vibration of laminated composite plate with random material properties', J Sound Vib., 272, 627-641 https://doi.org/10.1016/S0022-460X(03)00387-0
  36. Patel, RP., Gupta, S.S. and Sarda, R. (2005), 'Free flexural behavior of bimodular material angle-ply laminated composite plates', J. Sound Vib., 286, 167-186 https://doi.org/10.1016/j.jsv.2004.10.004
  37. Rao, M.K. and Desai, Y.M. (2004), 'Analytical solutions for vibrations of laminated and sandwich plates using mixed theory', Compos. Struct., 63, 361-373 https://doi.org/10.1016/S0263-8223(03)00185-5
  38. Reiss, R and Ramachandran, S. (1987), 'Maximum frequency design of symmetric angle-ply laminates', Comput. Struct., 4: 1476-1487. New York. Elsevier Applied Science
  39. Setoodh, AR. and Karami, G (2004), 'Static, free vibration and buckling analysis of anisotropic thick laminated composite plates on distributed and point elastic supports using a 3-D layer-wise FEM', Eng. Struct., 26, 211-220 https://doi.org/10.1016/j.engstruct.2003.09.009
  40. Shi, J.W, Nakatani, A. and Kitagawa, H. (2004), 'Vibration analysis of fully clamped arbitrarily laminated plate', Compos. Struct., 63, 115-122 https://doi.org/10.1016/S0263-8223(03)00138-7
  41. Sivakumar, K, Iyengar, N.G.R and Kalyanmoy, D. (1999), 'Optimum design of laminated composite plates undergoing large amplitude oscillations', Applied Composite Materials, 6, 87-98 https://doi.org/10.1023/A:1008896918956
  42. Wang, lW., Liew, K.M., Tan, MJ. and Rajendran, S. (2002), 'Analysis of rectangular laminated composite plates via FSDT meshless method', Int. J Mech. Sci., 44, 1275-1293 https://doi.org/10.1016/S0020-7403(02)00057-7
  43. Wang, S. and Zhang, Y. (2005), 'Vibration analysis of rectangular composite laminated plates using layerwise Bspline finite strip method', Compos. Struct., 68, 349-358 https://doi.org/10.1016/j.compstruct.2004.04.001

Cited by

  1. Effects of nonuniform boundary conditions on the buckling load optimization of laminated composite plates vol.30, pp.3, 2009, https://doi.org/10.1016/j.matdes.2008.05.012
  2. Maximization of Fundamental Frequencies of Axially Compressed Laminated Plates Against Fiber Orientation vol.47, pp.4, 2009, https://doi.org/10.2514/1.36555
  3. Optimum design of laminated composite plates to maximize buckling load using MFD method vol.45, pp.7-8, 2007, https://doi.org/10.1016/j.tws.2007.06.002
  4. Frequency optimization of laminated composite angle-ply plates with circular hole vol.29, pp.8, 2008, https://doi.org/10.1016/j.matdes.2008.03.002
  5. Multiobjective optimization of laminated composite cylindrical shells for maximum frequency and buckling load vol.30, pp.7, 2009, https://doi.org/10.1016/j.matdes.2008.09.020
  6. Strength design criterion for asymmetrically reinforced RC circular cross-sections in bending vol.11, pp.6, 2013, https://doi.org/10.12989/cac.2013.11.6.571
  7. Strength Optimization of Laminated Composite Plates vol.42, pp.17, 2008, https://doi.org/10.1177/0021998308093368
  8. Maximization of fundamental frequency of axially compressed laminated curved panels with cutouts vol.47, 2013, https://doi.org/10.1016/j.compositesb.2012.10.047
  9. Frequency optimization of laminated skew plates vol.30, pp.8, 2009, https://doi.org/10.1016/j.matdes.2008.11.007
  10. Multiobjective optimization of angle-ply laminated plates for maximum buckling load vol.46, pp.3, 2010, https://doi.org/10.1016/j.finel.2009.10.003
  11. Thermal buckling load optimization of laminated composite plates vol.46, pp.6, 2008, https://doi.org/10.1016/j.tws.2007.11.005
  12. Frequency optimization of laminated general quadrilateral and trapezoidal thin plates vol.30, pp.9, 2009, https://doi.org/10.1016/j.matdes.2009.02.014
  13. A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for vol.7, pp.3, 2006, https://doi.org/10.12989/scs.2007.7.3.253
  14. Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM vol.31, pp.4, 2006, https://doi.org/10.12989/sem.2009.31.4.407
  15. Effect of Rectangular/Circular Cutouts on Thermal Buckling Load Optimization of Angle-Ply Laminated Thin Plates vol.17, pp.2, 2006, https://doi.org/10.1515/secm.2010.17.2.93