References
- Cooper, R.M. and Naghdi, P.M. (1957), 'Propagation of non-axially symmetric waves in elastic cylindrical shells', J Acoust. Soc. Am., 29, 1365-1372 https://doi.org/10.1121/1.1908812
- Greenspon, J.E. (1960), 'Vibrations of a thick-walled cylindrical shell comparison of the exact theory with approximate theories', J. Acoust. Soc. Am., 32, 571-578 https://doi.org/10.1121/1.1908148
- Kadoli, R.K. and Ganesan, N. (2004), 'Studies on dynamic behavior of composite and isotropic cylindrical shells with PZT layers under axisymmetric temperature variation', J. Sound Vib.. 271, 103-130 https://doi.org/10.1016/S0022-460X(03)00265-7
- Liew, K.M., Lim, e.W and Kitipomchai, S. (1997), 'Vibration of shallow shells: A review with bibliography', Appl. Mech. Rev., 50, 431-444 https://doi.org/10.1115/1.3101731
- Liew, C.W, Cheng, Z.Q. and Reddy, IN. (2006), 'Natural frequencies of laminated piezoelectric plates with intemal electrodes', ZAMM, 86, 410-420 https://doi.org/10.1002/zamm.200310254
- Lim, C.W and Liew, K.M. (1995), 'A higher order theory for vibration of shear deformable cylindrical shallow shells', Int. J. Mech. Sci., 37, 277-295 https://doi.org/10.1016/0020-7403(95)93521-7
- Lim, C.W and Liew, K.M. (1996), 'Vibration of moderately thick cylindrical shallow shells', J. Acoust. Soc. Am., 100, 3665-3673 https://doi.org/10.1121/1.417229
- Lim, C.W, Liew, K.M. and Kitipomchai, S. (1998), 'Vibration of open cylindrical shells: A three-dimensional elasticity approach', J. Acoust. Soc. Am., 104, 1436-1443 https://doi.org/10.1121/1.424354
- Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity. Dover Publication, New York
- Lin, T.e. and Morgan, GW (1956), 'A study axi-symmetric vibrations of cylindrical shells as affected by rotary inertia and transverse shear', J. Appl. Mech., 23, 255-261
- Mindlin, R.D. (1952), 'Forced thickness-shear and flexural vibrations of piezoelectric crystal plates', J. Appl. Phy., 23, 83-88 https://doi.org/10.1063/1.1701983
- Mirsky, I. (1964), 'Vibrations of orthotropic, thick, cylindrical shells', J. Acoust. Soc. Am., 36, 41-51 https://doi.org/10.1121/1.1918910
- Mirsky, I. and Herrmann, G (1957), 'Non-axially symmetric motions of cylindrical shells', J. Acoust. Soc. Am., 29, 1116-1123 https://doi.org/10.1121/1.1908716
- Ping, T. and Li, Y.T. (2002), 'Modeling for the electro-magneto-elastic properties of piezoelectric-magnetic fiber reinforced composites', Composites, A: Spplied Science and Manufacturing. 33, 631-645 https://doi.org/10.1016/S1359-835X(02)00015-5
- Reissner, E. (1941), 'A new derivation of the equations for the deformation of elastic shells', Am. J. Math.. 63, 177-184 https://doi.org/10.2307/2371288
- Wang, Q. (2001), 'Wave propagation in a piezoelectric coupled cylindrical membrane shell', Int. J. Solids Struct., 38, 8207-8218 https://doi.org/10.1016/S0020-7683(01)00071-3
- Wang, Q. (2002), 'Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer', Int. J. Solids Struct., 39, 3023-3027 https://doi.org/10.1016/S0020-7683(02)00233-0
- Wang, Q. (2003), 'Analysis of wave propagation in piezoelectric coupled cylinder affected by transverse shear and rotary inertia', Int. J. Solids Struct., 40, 6653-6667 https://doi.org/10.1016/S0020-7683(03)00422-0
- Wang, X. (2003), 'A finitely long circular cylindrical shell of piezoelectric/piezomagnetic composite under pressuring and temperature change', Int. J. Eng. Sci., 41, 2429-2445 https://doi.org/10.1016/S0020-7225(03)00215-5
Cited by
- Interfacial fracture analysis of a piezoelectric–polythene composite cylindrical shell patch under axial shear vol.225, pp.2, 2014, https://doi.org/10.1007/s00707-013-0982-3
- Wave propagation in Reissner–Mindlin piezoelectric coupled cylinder with non-constant electric field through the thickness vol.44, pp.18-19, 2007, https://doi.org/10.1016/j.ijsolstr.2007.02.019
- Analytical and numerical modeling of resonant piezoelectric devices in China-A review vol.51, pp.12, 2008, https://doi.org/10.1007/s11433-008-0188-1
- Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping vol.23, pp.6, 2006, https://doi.org/10.12989/scs.2017.23.6.691