DOI QR코드

DOI QR Code

Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach

  • Wang, Shuhong (School of Resource and Civil Engineering, Northeastern University) ;
  • Tang, Chun'an (Lab for Numerical Test on Material Failure, Dalian University) ;
  • Jia, Peng (School of Resource and Civil Engineering, Northeastern University)
  • 투고 : 2004.12.28
  • 심사 : 2006.05.09
  • 발행 : 2006.09.30

초록

The masonry is a complex heterogeneous material and its shear deformation and fracture is associated with very complicated progressive failures in masonry structure, and is investigated in this paper using a mesoscopic mechanical modelling, Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the newly developed Material Failure Process Analysis (MFPA) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations by other researchers. This finding indicates that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.

키워드

참고문헌

  1. Abrams, D.P. and Paulson, T.J. (1991), 'Modeling earthequake response of masonry building structures', ACI Struct. J., 475-485
  2. Agioutantis, Z., Stiakakis, C. and Kleftakis, S. (2002), 'Numerical simulation of the mechanical behaviour of epoxy based mortars under compressive loads', Comput. Struct., 80(27-30), 2071-2084 https://doi.org/10.1016/S0045-7949(02)00251-1
  3. Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), 'Random particle model for fracture of aggregate or fiber composites', J. Eng. Mech., ASCE, 116(8), 1686-1705 https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
  4. Briccoli Bati, S., Ranocchiai, G. and Rovero, L. (1999), 'A micromechanical model for linear homogenization of brick masonry', Materials and Structures/Materiaux et Constructions, 32, 22-30
  5. Chiou, Y.J., Tzeng, J.C.. and Hwang, S.C. (1998), 'Discontinuous deformation analytical for reinforced concrete frames infilled with masonry walls', Struct. Eng. Mech., 6(2), 201-215 https://doi.org/10.12989/sem.1998.6.2.201
  6. Chiou, Y.J., Tzeng, J.C. and Liou, Y.W. (1999), 'Experimental and analytical study of masonry infilled frames', J. Struct. Eng., ASCE, 125(6), 1109-1125 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1109)
  7. Cluni, F. and Gusella, V. (2004), 'Homogenization of non-periodic masonry structures', Int. J. Solids Struct., 41(7), 1911-1923 https://doi.org/10.1016/j.ijsolstr.2003.11.011
  8. Giuseppe, G., Santi, R. and Roberto, S. (2001), 'Numerical analysis of masonry structures via interface models', Comput. Meth. Appl. Mech. Eng., 190, 6493-6511 https://doi.org/10.1016/S0045-7825(01)00225-0
  9. Guinea, G.V., Hussein, G., Elices, M. and Planas, J. (2000), 'Micromechanical modeling of brick-masonry fracture', Cement and Concrete Research, 30(5), 731-737 https://doi.org/10.1016/S0008-8846(00)00228-3
  10. Lotfi, H.R. and Shing, P.B. (1991), 'An appraisal of smeared crack models for masonry shear wall analysis', Comput. Struct., 41(3), 413-425 https://doi.org/10.1016/0045-7949(91)90134-8
  11. Lourenco, P.B., Rots, J.G. and Blaauwendraad, J. (1999), 'Implementation of an interface cap model for the analysis of masonry structures', Comput. Struct., 51(1), 123-134
  12. Marfia, S. and Sacco, E. (2001), 'Modeling of reinforced masonry elements', Int. J. Solids Struct., 38(24-25), 4177-4198 https://doi.org/10.1016/S0020-7683(00)00297-3
  13. Massart, T.J., Peerlings, R.H.J. and Geers, M.G.D. (2004), 'Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry', European Journal of Mechanics - A/Solids, 23(5), 719-735 https://doi.org/10.1016/j.euromechsol.2004.05.003
  14. Mazars, J. and Pijaudier-Cabot, G. (1987), 'Continuum damage theory - application to concrete', J. Eng. Mech., ASCE, 115(2), 345-365
  15. Miha, T. (1996), 'Seismic behavior of masonry walls: Experimental simulation', J. Struct. Eng., ASCE, 122(9), 1040-1047 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:9(1040)
  16. Milad, M.A., Shebani, L. and Sinha, S.N. (1999), 'Stress-strain characteristics of brick masonry under uniaxial cyclic loading', J. Struct. Eng., ASCE, 125(7), 600-604 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:6(600)
  17. Mohamed, A.R. and Hansen, W. (1999), 'Micromechanical modeling of concrete response understatic loading Part I: Model development and validation', ACI Mater. J., 96(2), 196-203
  18. Park, H., Klingner, R.E. and Wheat, D.L. (1999), 'Numerical techniques for predicting brittle failure of reinforced concrete planar structures', J. Struct. Eng., ASCE, 125(10), 1507-1513
  19. Paulo, B.L., Jan, G.R. and Johan, B. (1998), 'Continuum model for masonry: Parameter estimation and validation', J. Struct. Eng., ASCE, 124(6), 642-652 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(642)
  20. Pearce, C.J., Thavalingam, A., Liao, Z. and Bicanic, N. (2000), 'Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture', Engineering Fracture Mechanics, 65, 283-298 https://doi.org/10.1016/S0013-7944(99)00121-6
  21. Pegon, P., Pinto, A.V. and Geradin, M. (2001), 'Numerical modeling of stone-block monumental structures', Comput. Struct., 79, 2165-2181 https://doi.org/10.1016/S0045-7949(01)00070-0
  22. Raijmakers, T.M.J. and Vermeltfoort, A. Th. (1992), 'Deformation controlled mesoshear tests on masonry piers', Report B-92-1156, Tno-BOUW/Tu Eindhoven, Building and Construction Research, The Netherlands (in Dutch)
  23. Schangen, E. and Van Mier, J.G.M. (1992), 'Experimental and numerical analysis of micromechanisms of fracture of cement-based composites', Cement. Concr. Comp., 14, 105-118 https://doi.org/10.1016/0958-9465(92)90004-F
  24. Shi, C.X. (1992), Design and Theory of Masonry Structures, Chinese Construction Press, Beijing. (in Chinese)
  25. Sutcliffe, D.J., Yu, H.S. and Page, A.W. (2001), 'Lower bound limit analysis of unreinforced masonry', Comput. Struct., 79, 125-1312
  26. Van Mier, J.G.M. and Van Vliet, M.R.A (1999), 'Experimental and numerical simulation and the role of engineering judgment in the fracture mechanics of concrete and concrete structures', Constr. Build. Mater., 13, 3-14 https://doi.org/10.1016/S0950-0618(99)00003-3
  27. Vonk, R.A., Rutten, H.S., Van Mier, J.G.M. and Finneman, H.J. (1991), 'Micro-mechanical simulation of concrete softening', Proc. of the Int. RILEM/ESIS Conf., Fracture Processes in Concrete, Rock and Ceramics. Boundary Row, London: E. F. N. Spon, 129-138
  28. Wang, S.H. and Tang, C.A. (2003), Numerical Test of Masonry Failure Process, Science press, Beijing. (in Chinese)
  29. Wang, S.H., Tang, C.A., Wu, X. and Zhao, Y.C. (2002), 'Numerical analysis on crack formation, reciprocity & coalescence of masonry structure', J. Northeastern University[natural science], 23(11), 1108-1111
  30. Wang, S.H., Tang, C.A, Zhu, F.S. and Zhu, W.C. (2003), 'Constitutive damage model and its of numerical method on cracking process of masonry structure', J. Construction Structure, 24(2), 43-46. (in Chinese)
  31. Zhu, W.C. and Tang, C.A. (2002), 'Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model', Construction and Building Materials, 16(8), 453-463 https://doi.org/10.1016/S0950-0618(02)00096-X

피인용 문헌

  1. Numerical simulation of the failure process of unreinforced masonry walls due to concentrated static and dynamic loading vol.49, pp.2, 2012, https://doi.org/10.1016/j.ijsolstr.2011.10.016
  2. An Experimental Study of Excavation Damaged Zone in Anisotropic Rock vol.353-358, pp.1662-9795, 2007, https://doi.org/10.4028/www.scientific.net/KEM.353-358.905
  3. Mesoscopic study on historic masonry vol.30, pp.1, 2006, https://doi.org/10.12989/sem.2008.30.1.099