References
- Ayaz, F. (2004), 'Application of differential transfonns method to differential-algebraic equations', Appl. Math. Comput. , 152, 648-657
- Catal, H.H. (2002), 'Free vibration of partially supported piles with the effects of bending moment, axial and shear force', Eng. Struct., 24, 1615-1622 https://doi.org/10.1016/S0141-0296(02)00113-X
- Chen, C.K. and Ho, S.H. (1996), 'Application of differential transfonnation to eigenvalue problem', J. Appl. Math. Comput., 79, 173-188 https://doi.org/10.1016/0096-3003(95)00253-7
- Chen, C.K. and Ho, S.H. (1999), 'Transverse vibration of a rotating twisted Timeshenko beams under axial loading using differential transfonn', Int. J. Mech. Sci., 41, 1339-1356 https://doi.org/10.1016/S0020-7403(98)00095-2
- Chen, C.L. and Liu, Y.C. (1998) 'Solution of two-point boundary-value problems using the differential transfonnation method', Journal of Optimization Theory and Application, 99, 23-35 https://doi.org/10.1023/A:1021791909142
- Chopra, A. (1995), Dynamic of Structures, Prentice-Hall, Inc., New Jersey, 729p
- Doyle, P.F and Pavlovic, M.N. (1982), 'Vibration of beams on partial elastic foundations', Earthq. Eng. Struct. Dyn., 10, 663-674 https://doi.org/10.1002/eqe.4290100504
- Hassan, I. (2002), 'Different applications for the differential transfonnation in the differential equations', Appl.Math. Comput, 129, 183-201 https://doi.org/10.1016/S0096-3003(01)00037-6
- Hassan, I. (2002), 'On solving some eigenvalue problems by using differential transfonnation', Appl. Math. Comput., 127, 1-22 https://doi.org/10.1016/S0096-3003(00)00123-5
- Jang, M.J. and Chen, C.L. (1997), 'Analysis of the response of a strongly non-linear damped system using a differential transfonnation technique', Appl. Math. Comput., 88, 137-151 https://doi.org/10.1016/S0096-3003(96)00308-6
- Jang, M.J., Chen, C.L. and Liu, Y.C. (2000), 'On solving the initial-value problems using differential transfonnation method', Appl. Math. Comput. , 115, 145-160 https://doi.org/10.1016/S0096-3003(99)00137-X
- Koksal, M. and Herdem, S. (2002), 'Analysis of non-linear circuits by using differential Taylor transfonn', Comput. Electrical Eng., 28, 513-525 https://doi.org/10.1016/S0045-7906(00)00066-5
- Ozdemir, O. and Kaya, M.O. (2006), 'Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method', J. Sound Vib., 289, 413-420 https://doi.org/10.1016/j.jsv.2005.01.055
- Tuma, J.J. and Cheng, F.Y. (1983), Theory and Problems of Dynamic Structural Analysis, Schaum's Outline Series, 234 p, McGraw-Hill Inc., New York
- West, H.H. and Mafi, M. (1984), 'Eigenvalues for beam-columns on elastic supports', J. Struct. Eng., ASCE, 110, 1305-1319 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:6(1305)
- Zhou, J.K. (1986), Differential Transformation and Its Applications for Electrical Circuits, Wuhan China:Huazhong University Press
Cited by
- DTM and DQEM for free vibration of axially loaded and semi-rigid-connected Reddy-Bickford beam vol.27, pp.5, 2011, https://doi.org/10.1002/cnm.1313
- Solution of free vibration equation of elastically supported Timoshenko columns with a tip mass by differential transform method vol.42, pp.10, 2011, https://doi.org/10.1016/j.advengsoft.2011.06.002
- Free vibration analysis of a system of elastically interconnected rotating tapered Timoshenko beams using differential transform method vol.107, 2016, https://doi.org/10.1016/j.ijmecsci.2015.12.027
- Flexural–torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM vol.306, pp.3-5, 2007, https://doi.org/10.1016/j.jsv.2007.05.049
- Free transverse vibrations of an elastically connected simply supported twin pipe system vol.34, pp.5, 2010, https://doi.org/10.12989/sem.2010.34.5.549
- Vibration analysis of a rotating tapered Timoshenko beam using DTM vol.45, pp.1, 2010, https://doi.org/10.1007/s11012-009-9221-3
- Symmetrically loaded beam on a two-parameter tensionless foundation vol.27, pp.5, 2007, https://doi.org/10.12989/sem.2007.27.5.555
- Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.847
- Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method vol.52, pp.5, 2014, https://doi.org/10.12989/sem.2014.52.5.971
- Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method vol.31, pp.4, 2009, https://doi.org/10.12989/sem.2009.31.4.453
- Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems vol.33, pp.4, 2008, https://doi.org/10.1007/s12046-008-0026-1
- Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias vol.53, pp.3, 2015, https://doi.org/10.12989/sem.2015.53.3.537
- Solution of free vibration equations of semi-rigid connected Reddy–Bickford beams resting on elastic soil using the differential transform method vol.81, pp.2, 2011, https://doi.org/10.1007/s00419-010-0405-z
- Differential transform method for free vibration analysis of a moving beam vol.35, pp.5, 2010, https://doi.org/10.12989/sem.2010.35.5.645
- Response of forced Euler-Bernoulli beams using differential transform method vol.42, pp.1, 2006, https://doi.org/10.12989/sem.2012.42.1.095
- Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline vol.62, pp.1, 2006, https://doi.org/10.12989/sem.2017.62.1.065