DOI QR코드

DOI QR Code

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam (Department of Material and Structure Mechanics, Hanoi University of Technology) ;
  • Tran, Ich Thinh (Department of Material and Structure Mechanics, Hanoi University of Technology)
  • Received : 2005.12.21
  • Accepted : 2006.04.18
  • Published : 2006.09.10

Abstract

This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Keywords

References

  1. Beatty, M.F (1987), 'Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues with examples', Appl. Mech. Rev., 40(12), 1699-1734 https://doi.org/10.1115/1.3149545
  2. Bonet, J and Burton, A.J. (1998), 'A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations', Comput. Meth. Appl. Mech. Eng., 162, 151-164 https://doi.org/10.1016/S0045-7825(97)00339-3
  3. Bonet, J. and Profit, M.L. (2000), 'Nonlinear viscoelastic constitutive modeling of a continuum', European Congress on Comput. Meth. Appl. Mech. Eng., Barcelona, 11-14 September
  4. Chevaugeon, N., Marckmann, G, Verron, E. and Peseux, B. (2002), 'lnstabilite et bifurcation du souffage de membranes hyperelastiques', REEF, 479-492
  5. Clarke, M.J. and Hancock, G.J (1990), 'A study of incremental-iterative strategies for nonlinear analyses', Int. J. Numer. Meth. Eng., 29, 1365-1391 https://doi.org/10.1002/nme.1620290702
  6. De Souza Neto, E.A. and Feng, Y.T (1999), 'On the determination of the path direction for arc-length methods in the presence of bifurcations and 'snap-backs', Comput. Meth. Appl. Mech. Eng., 179, 81-89 https://doi.org/10.1016/S0045-7825(99)00042-0
  7. Feng, Y.T, Peric, D. and Owen, D.RJ. (1996), 'A new criterion for determination of initial loading parameter in arc-length methods', Comput. Struct., 58 (3), 479-485 https://doi.org/10.1016/0045-7949(95)00168-G
  8. Green, A.E. and Adkins, J.E. (1965), 'Bolsije uprugie deformaci i nelinejnaja mechanika splosnoj stredy', Moskva
  9. Guo, X. (2001), 'Large deformation analysis for a cylindrical hyperelastic membrane of rubber-like material under internal pressure', Rubber Chemistry and Technology, 74, 100-115 https://doi.org/10.5254/1.3547631
  10. Holzapfel, G.A., Eberlein, R., Wriggers, P. and Weizsacker, H.W. (1996), 'Large strain analysis of soft biological membranes: Formulation and finite element analysis', Comput. Meth. Appl. Mech. Eng., 132,45-61 https://doi.org/10.1016/0045-7825(96)00999-1
  11. Holzapfel, G.A., Gasser, T.C. and Ogden, R.W. (2000), 'A new constitutive framework for arterial wall mechanics and a comparative study of material models', J. of Elasticity, 61, 1-48 https://doi.org/10.1023/A:1010835316564
  12. Holzapfel, G.A. and Gasser, T.C. (2001), 'A viscoelastic model for fiber-reinforced composites at finite strains:Continuum basis, computational aspects and applications', Comput. Meth. Appl. Mech. Eng., 190,4379-4430 https://doi.org/10.1016/S0045-7825(00)00323-6
  13. Holzapfel, G.A. (2000), Nonlinear Solid Mechanics, John Wiley & Sons Ltd, ISBN: 0-471-82319-8, Chichester West Sussex PO19, England
  14. Jiang, L. and Haddow, J.B. (1995), 'A finite element formulation for finite static axisymmetric deformation of hyperelastic membranes', Comput. Struct., 57,401-405 https://doi.org/10.1016/0045-7949(94)00629-H
  15. Ogden, R.W. (2001), 'Background on nonlinear elasticity', Lemaitre J., ed., in the Handbook of Materials Behavior Models, Chapter 2.2, Academic Press, Boston, 75-83
  16. Ogden, R.W. and Schulze-Bauer, C.A.J. (2000), 'Phenomenological and structural aspects of the mechanical response of arteries', appeared as Proc. in Mechanics in Biology, J. Casey and G Bao, eds., AMD-242, BED46, New York, 125-140
  17. Pozivilova, A. and Plesek, J. (2002), 'Elastomery: Konstitutivni mocielovani, identifikace materialovych parametru a porovnani s experimentem', Inzenyrka mechanika, Svratka, Ceska Republika
  18. Reese, S. (2000), 'Large deformation FE modeling of the orthotropic elastoplastic material behavior in pneumatic membranes', European Congress on Comput. Methods Appl. Mech. Eng.. Barcelona, 11-14 September
  19. Reese, S., Raible, T and Wriggers, P. (2001), 'Finite element modeling of orthotropic material behavior in pneumatic membranes', Int. J. Solids Struct., 38, 9525-9544 https://doi.org/10.1016/S0020-7683(01)00137-8
  20. Shi, land Moita, G.F (1996), 'The post-critical analysis of axisymmetric hyper-elastic membranes by finite element method', Comput. Meth. Appl. Mech. Eng., 135,265-281 https://doi.org/10.1016/0045-7825(96)01047-X
  21. Verron, E. and Marckmann, G (2001), 'An axisymmetric B-spline model for the non-linear inflation of rubberlike membranes', Comput. Meth. Appl. Mech. Eng., 190,6271-6289 https://doi.org/10.1016/S0045-7825(01)00227-4
  22. Verron, E. and Marckmann, G (2003), 'Inflation of elastomeric circular membranes using network constitutive equations', Int. J. of Non-Linear Mechanics, 38, 1221-1235 https://doi.org/10.1016/S0020-7462(02)00069-0
  23. Wriggers, P. and Taylor, R.L. (1990), 'A fully non-linear axisymmetrical membrane element for rubber-like materials', Eng. Comput., 7, 303-310 https://doi.org/10.1108/eb023817

Cited by

  1. Constitutive modelling of arteries vol.466, pp.2118, 2010, https://doi.org/10.1098/rspa.2010.0058