DOI QR코드

DOI QR Code

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Received : 2004.12.28
  • Accepted : 2006.04.17
  • Published : 2006.08.20

Abstract

A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

Keywords

References

  1. Akpan, U.O., Koko, T.S., Orisamolu, I.R. and Gallant, B.K. (2001), 'Practically fuzzy finite element analysis of structures', Finite Elements in Analysis and Design, 38, 93-111 https://doi.org/10.1016/S0168-874X(01)00052-X
  2. Brewer, J.W. (1978), 'Kronecker products and matrix calculus in system theory', Trans. on Circuits and Systems (IEEE), 25, 772-781 https://doi.org/10.1109/TCS.1978.1084534
  3. Chakraborty, S. and Dey, S.S. (1998), 'A stochastic finite element dynamic analysis of structures with uncertain parameters', Int. J. Mech. Sci., 40(11), 1071-1087 https://doi.org/10.1016/S0020-7403(98)00006-X
  4. De Lima, B.S.L.P. and Ebecken, N.F.F. (2000), 'A comparison of models for uncertainty analysis by the finite element method', Finite Elements in Analysis and Design, 34, 211-232 https://doi.org/10.1016/S0168-874X(99)00039-6
  5. Der Kiureghian, A. and Ke, J.B. (1988), 'The stochastic finite element method in structural reliability', Probabilistic Engineering Mechanics, 3(2), 83-91 https://doi.org/10.1016/0266-8920(88)90019-7
  6. Di Paola, M., Falsone, G and Pirrotta, A. (1992), 'Stochastic response analysis of nonlinear systems under gaussian inputs', Probabilistic Engineering Mechanics, 7, 15-21 https://doi.org/10.1016/0266-8920(92)90004-2
  7. Elishakoff, I., Ren, Y.J. and Shinozuka, M. (1995), 'Improved finite element method for stochastic structures', Chaos, Solitons & Fractals, 5(5), 833-846 https://doi.org/10.1016/0960-0779(94)00157-L
  8. Falsone, G. and Ferro, G. (2004), 'A method for the dynamical analysis of FE discretized uncertain structures in the frequency domain', submitted to Computer Methods in Applied Mechanics and Engineering
  9. Ghanem, R.G. and Spanos, P.D. (1990), 'Polynomial chaos in stochastic finite elements', J. Appl. Mech., 57(1), 197-202 https://doi.org/10.1115/1.2888303
  10. Ghanem, R.G. and Spanos, P.D. (1991), Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, N.Y
  11. Ibrahim, R.A. (1985), Parametric Random Vibration, Research Press Ltd., Latchworth, UK
  12. Impollonia, N. and Muscolino, G. (2002), 'Static and dynamic analysis of non-linear uncertain structures', Meccanica, 37, 179-192 https://doi.org/10.1023/A:1019695404923
  13. Li, C.C. and Der Kiureghian, A. (1993), 'Optimal discretization of random fields', J. Eng. Mech., 119(6), 1136-1154 https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
  14. Lin, Y.K. (1967), Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York
  15. Liu, K.L., Belytschko, T. and Mani, A. (1986), 'Random field finite elements', Int. J. Numer. Meth. Eng., 23(10), 1806-1825
  16. Liu, K.L., Mawi, A. and Belytschko, T. (1987), 'Finite element methods in probabilistic mechanics', Probabilistic Engineering Mechanics, 2(4), 201-213 https://doi.org/10.1016/0266-8920(87)90010-5
  17. Matthies, H.G, Brenner, C.E., Bucher, C.G. and Soares, C.G. (1997), 'Uncertainties in probabilistic numerical analysis of structures and solids - Stochastic finite elements', Structural Safety, 19(3), 283-336 https://doi.org/10.1016/S0167-4730(97)00013-1
  18. Nakagiri, S. and Hisada, T. (1982), 'Stochastic finite element method applied to structural analysis with uncertain parameters', Proc. of the Int. Conf. on Finite Element Methods, Aechen, Germany, 206-211
  19. Noh, H.-C. (2004), 'A formulation for stochastic finite element analysis of plate structures with uncertain Poisson's ratio', Comput. Methods Appl. Mech. Eng., 193, 4847-4873
  20. Papadrakakis, M. and Kotsopoulos, A. (1999) 'Parallel solution method for stochastic finite element analysis using Monte-Carlo simulation', Comput. Methods Appl. Mech. Eng., 168, 305-320 https://doi.org/10.1016/S0045-7825(98)00147-9
  21. Rao, S.S. and Savyer, J.P. (1995), 'A fuzzy finite element approach for the analysis of imprecisely-defined systems, AIAA J., 33, 2264-2370 https://doi.org/10.2514/3.12978
  22. Schueller, G.I. (2001), 'Computational stochastic mechanics - Recent advances', Comput. Struct., 79, 2225-2234 https://doi.org/10.1016/S0045-7949(01)00078-5
  23. Spanos, P.D. and Ghanem, R. (1989), 'Stochastic finite element expansion for random media', J. Eng. Mech., 115(5), 1035-1053 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035)
  24. Stefanou, G and Papadrakakis, M. (2004), 'Stochastic finite element analysis of shells with combined random material and geometric properties', Comput. Methods Appl. Mech. Eng., 193, 139-160 https://doi.org/10.1016/j.cma.2003.10.001
  25. Sudret, B. and DerKiureghian, A. (2000), 'Stochastic finite element methods and reliability: A state-of-art report', Technical Report UCB/SEMM-2000/08, Department of Civil and Environmental, University of California
  26. Van den Nieuwenhof, B. and Coyette, J.-P. (2003), 'Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties', Comput. Methods Appl. Mech. Eng., 192, 3705-3729 https://doi.org/10.1016/S0045-7825(03)00371-2
  27. Vanmarcke E.H. and Grigoriu, M. (1983), 'Stochastic finite element analysis of simple beams', J. Eng. Mech., 109(5), 1203-1214 https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)
  28. Wu, W.F. and Lin, Y.K. (1984), 'Cumulant-neglect closure for non-linear oscillators under random parametric and external excitations', Int. J. Non-Linear Mech., 15, 910-916
  29. Yamazaki, F., Shinozuka, M. and Dasgupta, G. (1988), 'Neumann expansion for stochastic finite element analysis', J. Eng. Mech., 114(8), 1335-1354 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)
  30. Zadeh, L.A. (1978), 'Fuzzy sets as basis for a theory of possibility', Fuzzy Sets and Systems, 1, 3-28 https://doi.org/10.1016/0165-0114(78)90029-5

Cited by

  1. The stochastic finite element method: Past, present and future vol.198, pp.9-12, 2009, https://doi.org/10.1016/j.cma.2008.11.007
  2. A Partition Expansion Method for Nonlinear Response Analysis of Stochastic Dynamic Systems With Local Nonlinearity vol.8, pp.3, 2013, https://doi.org/10.1115/1.4023163
  3. The finite element method for the reliability analysis of lining structures based on Monte Carlo stochastic vol.20, pp.4, 2017, https://doi.org/10.1007/s10586-017-1073-3
  4. Uncertainty propagation of heat conduction problem with multiple random inputs vol.99, 2016, https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.094